**Leetcode 72. Edit Distance
阿新 • • 發佈:2019-02-01
Given two words word1 and word2, find the minimum number of steps required to convert word1 to word2. (each operation is counted as 1 step.)
You have the following 3 operations permitted on a word:
a) Insert a character
b) Delete a character
c) Replace a character
time limit exceeded
class Solution {
public:
int minDistance(string word1, string word2) {
size_t len1 = word1.size();
size_t len2 = word2.size();
if (len1 == 0) return len2;
if (len2 == 0) return len1;
int ret = max(len1, len2);
if (word1[0] == word2[0]) {
ret = min(ret, minDistance(string(word1.begin() + 1 , word1.end()), string(word2.begin() + 1, word2.end())));
} else {
ret = min(ret, 1 + minDistance(string(word1.begin() + 1, word1.end()), string(word2.begin() + 1, word2.end()))); // replace
ret = min(ret, 1 + minDistance(string(word1.begin() + 1, word1.end()), word2)); // insert;
ret = min(ret, 1 + minDistance(word1, string(word2.begin() + 1, word2.end()))); // delete
}
return ret;
}
};
這個題自己沒有做出來, 沒有想到動態規劃,可見還是對動態規劃演算法的理解不夠深入。
參考後
class Solution {
public:
int minDistance(string word1, string word2) {
size_t r = word1.size();
size_t c = word2.size();
vector<vector<int> > dp(r + 1, vector<int>(c + 1, 0));
for (size_t i = 0; i <= r; ++i) {
dp[i][0] = i;
}
for (size_t i = 1; i <= c; ++i) {
dp[0][i] = i;
}
for (size_t i = 0; i != r; ++i) { // word1
for (size_t j = 0; j != c; ++j) { // word2
if (word1[i] == word2[j]) {
dp[i + 1][j + 1] = dp[i][j];
} else {
// insert dp[i + 1][j + 1] = dp[i + 1][j] + 1;
// delete dp[i + 1][j + 1] = dp[i][j + 1] + 1;
// replace dp[i + 1][j + 1] = dp[i][j] + 1;
dp[i + 1][j + 1] = min(dp[i + 1][j] + 1, dp[i][j + 1] + 1);
dp[i + 1][j + 1] = min(dp[i + 1][j + 1], dp[i][j] + 1);
}
}
}
return dp[r][c];
}
};