【筆記】最長遞增子序列 Longest increasing subsequence(LIS)
介紹和解法,參見wikipedia https://en.wikipedia.org/wiki/Longest_increasing_subsequence
筆記:
在按下標順序遍歷序列 X 的過程中,記錄所有不同長度 L 的增長最慢的遞增子序列,因為序列是遞增的,只需要記錄其最大元素,記為 M[L]
比如,對於序列 5,8,9,6,7,在訪問 6 之前,M[1]=5,M[2]=8,M[3]=9。
訪問 6 時,長度為2 的增長最慢的遞增子序列為5,6,因此 M[2] 變為 6。
同理,訪問 7 時, M[3] 變為 7。
遍歷結束後,M 的長度即為 LIS 的長度,但並不知道這個 LIS 是什麽。
為了得到 LIS,將原來 M 保存的數據改為該數據在序列 X 中的 index;
並且,在遍歷 X 的過程中,記錄每個元素 X[i] 在候選的遞增子序列中的前驅元素在序列 X 中的 index,記為P[i]
這樣在遍歷結束後,就可以從後往前輸出 LIS:記 M 長度為 m,有:
LIS[m] = X[ M[m] ] LIS[m-1] = X[ P[M[m]] ] LIS[m-2] = X[P[P[M[m]]]] ......
wikipedia 原文引用如下:
It processes the sequence elements in order, maintaining the longest increasing subsequence found so far. Denote the sequence values as X[0], X[1], etc. Then, after processing X[i
], the algorithm will have stored values in two arrays:
- M[j] — stores the index k of the smallest value X[k] such that there is an increasing subsequence of length j ending at X[k] on the range k ≤ i. Note that j ≤ (i+1), because j ≥ 1 represents the length of the increasing subsequence, and k ≥ 0 represents the index of its termination.
- P[k] — stores the index of the predecessor of X[k] in the longest increasing subsequence ending at X[k].
P = array of length N M = array of length N + 1 L = 0 for i in range 0 to N-1: // Binary search for the largest positive j ≤ L // such that X[M[j]] < X[i] lo = 1 hi = L while lo ≤ hi: mid = ceil((lo+hi)/2) if X[M[mid]] < X[i]: lo = mid+1 else: hi = mid-1 // After searching, lo is 1 greater than the // length of the longest prefix of X[i] newL = lo // The predecessor of X[i] is the last index of // the subsequence of length newL-1 P[i] = M[newL-1] M[newL] = i if newL > L: // If we found a subsequence longer than any we‘ve // found yet, update L L = newL // Reconstruct the longest increasing subsequence S = array of length L k = M[L] for i in range L-1 to 0: S[i] = X[k] k = P[k] return S
相關問題:
最長先遞增再遞減子序列 牛客網 https://www.nowcoder.com/practice/6d9d69e3898f45169a441632b325c7b4?tpId=37&tqId=21247&tPage=1&rp=&ru=/ta/huawei&qru=/ta/huawei/question-ranking
看了解法,思路如下:
遍歷序列 X,得到以 X[i] 結尾的 LIS 的長度 Li[i] 和以 X[i] 開始的 LDS 的長度 Ld[i], 找到 Li[i] + Ld[i] 的最大值;
將 X 反向再求 LIS 即最長遞減子序列 LDS;
在上述解法中加入 Li[i]:Li[i] = L[P[i]] + (newL > L) ? 1 : 0
最長公共子序列 Longest Common Subsequence(LCS) 可參見算法導論
TODO: Longest Common Subsequence for Multiple Sequences https://stackoverflow.com/questions/5752208/longest-common-subsequence-for-multiple-sequences
【筆記】最長遞增子序列 Longest increasing subsequence(LIS)