1. 程式人生 > >樹和樹的遍歷

樹和樹的遍歷

sea ini 二叉樹的深度 出隊 入隊 alt 以及 return 深度遍歷

二叉樹

二叉樹的基本概念

二叉樹是每個節點最多有兩個子樹的樹結構。通常子樹被稱作“左子樹”(left subtree)和“右子樹”(right subtree)

二叉樹的性質(特性)

性質1: 在二叉樹的第i層上至多有2^(i-1)個結點(i>0)
性質2: 深度為k的二叉樹至多有2^k - 1個結點(k>0)
性質3: 對於任意一棵二叉樹,如果其葉結點數為N0,而度數為2的結點總數為N2,則N0=N2+1;
性質4:具有n個結點的完全二叉樹的深度必為 log2(n+1)
性質5:對完全二叉樹,若從上至下、從左至右編號,則編號為i 的結點,其左孩子編號必為2i,其右孩子編號必為2i+1;其雙親的編號必為i/2(i=1 時為根,除外)

(1)完全二叉樹——若設二叉樹的高度為h,除第 h 層外,其它各層 (1~h-1) 的結點數都達到最大個數,第h層有葉子結點,並且葉子結點都是從左到右依次排布,這就是完全二叉樹。

技術分享圖片

(2)滿二叉樹——除了葉結點外每一個結點都有左右子葉且葉子結點都處在最底層的二叉樹。

技術分享圖片

二叉樹的節點表示以及樹的創建

通過使用Node類中定義三個屬性,分別為elem本身的值,還有lchild左孩子和rchild右孩子

二叉樹的節點表示以及樹的創建

通過使用Node類中定義三個屬性,分別為elem本身的值,還有lchild左孩子和rchild右孩子

class Node(object):
    """
節點類""" def __init__(self, elem=-1, lchild=None, rchild=None): self.elem = elem self.lchild = lchild self.rchild = rchild

樹的創建,創建一個樹的類,並給一個root根節點,一開始為空,隨後添加節點

class Tree(object):
    """樹類"""
    def __init__(self, root=None):
        self.root = root

    def add(self, elem):
        
"""為樹添加節點""" node = Node(elem) #如果樹是空的,則對根節點賦值 if self.root == None: self.root = node else: queue = [] queue.append(self.root) #對已有的節點進行層次遍歷 while queue: #彈出隊列的第一個元素 cur = queue.pop(0) if cur.lchild == None: cur.lchild = node return elif cur.rchild == None: cur.rchild = node return else: #如果左右子樹都不為空,加入隊列繼續判斷 queue.append(cur.lchild) queue.append(cur.rchild)

二叉樹的遍歷

樹的遍歷是樹的一種重要的運算。所謂遍歷是指對樹中所有結點的信息的訪問,即依次對樹中每個結點訪問一次且僅訪問一次,我們把這種對所有節點的訪問稱為遍歷(traversal)。那麽樹的兩種重要的遍歷模式是深度優先遍歷和廣度優先遍歷,深度優先一般用遞歸,廣度優先一般用隊列。一般情況下能用遞歸實現的算法大部分也能用堆棧來實現。

深度優先遍歷

對於一顆二叉樹,深度優先搜索(Depth First Search)是沿著樹的深度遍歷樹的節點,盡可能深的搜索樹的分支。
那麽深度遍歷有重要的三種方法。這三種方式常被用於訪問樹的節點,它們之間的不同在於訪問每個節點的次序不同。這三種遍歷分別叫做先序遍歷(preorder),中序遍歷(inorder)和後序遍歷(postorder)。我們來給出它們的詳細定義,然後舉例看看它們的應用。

  • 先序遍歷 在先序遍歷中,我們先訪問根節點,然後遞歸使用先序遍歷訪問左子樹,再遞歸使用先序遍歷訪問右子樹
    根節點->左子樹->右子樹
    def preorder(self, root):
          """遞歸實現先序遍歷"""
          if root == None:
              return
          print root.elem
          self.preorder(root.lchild)
          self.preorder(root.rchild)

  • 中序遍歷 在中序遍歷中,我們遞歸使用中序遍歷訪問左子樹,然後訪問根節點,最後再遞歸使用中序遍歷訪問右子樹
    左子樹->根節點->右子樹
    def inorder(self, root):
          """遞歸實現中序遍歷"""
          if root == None:
              return
          self.inorder(root.lchild)
          print root.elem
          self.inorder(root.rchild)

  • 後序遍歷 在後序遍歷中,我們先遞歸使用後序遍歷訪問左子樹和右子樹,最後訪問根節點
    左子樹->右子樹->根節點
    def postorder(self, root):
          """遞歸實現後續遍歷"""
          if root == None:
              return
          self.postorder(root.lchild)
          self.postorder(root.rchild)
          print root.elem

技術分享圖片

課堂練習: 按照如圖樹的結構寫出三種遍歷的順序:

技術分享圖片

結果:
先序:a b c d e f g h
中序:b d c e a f h g
後序:d e c b h g f a
思考:哪兩種遍歷方式能夠唯一的確定一顆樹???

廣度優先遍歷(層次遍歷)

從樹的root開始,從上到下從從左到右遍歷整個樹的節點

def breadth_travel(self, root):
        """利用隊列實現樹的層次遍歷"""
        if root == None:
            return
        queue = []
        queue.append(root)
        while queue:
            node = queue.pop(0)
            print node.elem,
            if node.lchild != None:
                queue.append(node.lchild)
            if node.rchild != None:
                queue.append(node.rchild)

樹和樹的遍歷