bzoj 2298 [HAOI2011]problem a dp+樹狀數組
阿新 • • 發佈:2018-08-14
opera sin 補集 its char bool name node c++ namespace
題面
題目傳送門
解法
考慮補集轉化,我們只要求正確的最大個數即可
顯然,一些明顯就是錯誤的東西可以直接排除
對於\((x,y)\)相同的位置一定相等
那麽我們就可以把\((x,y)\)相等的並在一類
然後考慮一下\((x,y)\)怎麽轉化,顯然就是那一個數在整個數列中排名對應的區間,為\([x+1,n-y]\)
把區間相等的合並一下,剩下的都是不相等的
然後只要選出盡量多的不相交的區間即可
將左端點排序,然後用樹狀數組優化一下dp即可
時間復雜度:\(O(n\ log\ n)\)
代碼
#include <bits/stdc++.h> #define N 100010 using namespace std; template <typename node> void chkmax(node &x, node y) {x = max(x, y);} template <typename node> void chkmin(node &x, node y) {x = min(x, y);} template <typename node> void read(node &x) { x = 0; int f = 1; char c = getchar(); while (!isdigit(c)) {if (c == ‘-‘) f = -1; c = getchar();} while (isdigit(c)) x = x * 10 + c - ‘0‘, c = getchar(); x *= f; } struct Node { int l, r, v; bool operator < (const Node &a) const { if (l != a.l) return l < a.l; return r < a.r; } } a[N], b[N]; int n, tot, len, f[N], dp[N]; int lowbit(int x) {return x & -x;} bool cmp(Node a, Node b) {return a.l != b.l || a.r != b.r;} int query(int x) { int ret = 0; for (int i = x; i; i -= lowbit(i)) chkmax(ret, f[i]); return ret; } void modify(int x, int v) { for (int i = x; i <= n; i += lowbit(i)) chkmax(f[i], v); } int main() { read(n); for (int i = 1; i <= n; i++) { int x, y; read(x), read(y); if (x + y < n) a[++tot] = (Node) {x + 1, n - y, 0}; } sort(a + 1, a + tot + 1); Node las = a[1]; int sum = 1; for (int i = 2; i <= tot; i++) if (cmp(a[i], las)) { b[++len] = las, b[len].v = sum; las = a[i], sum = 1; } else sum++; b[++len] = las; b[len].v = sum; int ans = 0; for (int i = 1; i <= len; i++) chkmin(b[i].v, b[i].r - b[i].l + 1); sort(b + 1, b + len + 1); for (int i = 1; i <= len; i++) { dp[i] = query(b[i].l - 1) + b[i].v; modify(b[i].r, dp[i]); chkmax(ans, dp[i]); } cout << n - ans << "\n"; return 0; }
bzoj 2298 [HAOI2011]problem a dp+樹狀數組