深度學習 Bottleneck layer / Bottleneck feature
最近在學習deeplearning的時候接觸到了bottle-neck layer,好奇它的作用於是便扒了一些論文(論文鏈接放在文末吧),系統的了解一下bottle-neck feature究竟有什麽用。
論文[1]中對bottle-neck feature的介紹:
對應的圖示如下:
直觀的理解是這玩意兒應該是用來降維用的,沒錯,那為什麽用它比較好呢,另一篇論文[2]給了解釋:
If we do not want to use the dimensionality reduction techniques, and want to obtain the features suitable for the classification as outcome of neural net training process, a bottle-neck
個人絕大非線性的壓縮能力以及在網絡中的可學習性是這個idea突出的地方(感覺過幾個月回頭看會覺得這個觀點很好笑哈哈 姑且先寫在這裏吧)
reference:
[1] Efficient Processing of Deep Neural Networks: A Tutorial and Survey Vivienne Sze, Senior Member, IEEE, Yu-Hsin Chen, Student Member, IEEE, Tien-Ju Yang, Student Member, IEEE, Joel Emer, Fellow, IEEE
[2] PROBABILISTIC AND BOTTLE-NECK FEATURES FOR LVCSR OF MEETINGS Frantisek ˇ Grezl, ′ Martin Karafiat, ′ Stanislav Kontar′ and Jan Cernoc ˇ ky′ Speech@FIT group, Brno University of Technology, Czech Republic
鏈接:http://www.fit.vutbr.cz/research/groups/speech/publi/2007/grezl_BN_fea_icassp_2007.pdf
https://arxiv.org/pdf/1703.09039.pdf (要梯子)
深度學習 Bottleneck layer / Bottleneck feature