POJ 2299 Ultra QuickSort
Ultra-QuickSort
| Time Limit: 7000MS | | Memory Limit: 65536K |
| Total Submissions: 72479 | | Accepted: 27197 |
Description
In this problem, you have to analyze a particular sorting algorithm. The algorithm processes a sequence of n distinct integers by swapping two adjacent sequence elements until the sequence is sorted in ascending order. For the input sequence
Ultra-QuickSort produces the output
Your task is to determine how many swap operations Ultra-QuickSort needs to perform in order to sort a given input sequence.
Input
The input contains several test cases. Every test case begins with a line that contains a single integer n < 500,000 -- the length of the input sequence. Each of the the following n lines contains a single integer 0 ≤ a[i] ≤ 999,999,999, the i-th input sequence element. Input is terminated by a sequence of length n = 0. This sequence must not be processed.
Output
For every input sequence, your program prints a single line containing an integer number op, the minimum number of swap operations necessary to sort the given input sequence.
Sample Input
5
9
1
0
5
4
3
1
2
3
0
Sample Output
6
0
Source
題解
快速排序模板題,程式碼如下:
#include <iostream> #include <vector> using namespace std ; long long merge(vector<long long> &a , long long l , long long mid , long long r){ long long help[r-l+1] ; long long k = 0 ; long long p1 = l , p2 = mid + 1 ; long long sum = 0 ; while ( p1 <= mid && p2 <= r ){ sum += a[p1] > a[p2] ? (r-p2+1) : 0 ; help[k++] = a[p1] > a[p2] ? a[p1++] : a[p2++] ; } while ( p1 <= mid ){ help[k++] = a[p1++] ; } while ( p2 <= r ){ help[k++] = a[p2++] ; } for ( long long i = 0 ; i < r-l+1 ; i ++ ){ a[i+l] = help[i] ; } return sum ; } long long merge_sort(vector<long long> &a , long long l , long long r){ if ( l == r ) return 0 ; long long mid = l + (r-l) / 2 ; return merge_sort(a,l,mid) + merge_sort(a,mid+1,r) + merge(a,l,mid,r) ; } int main(){ long long n ; while ( cin >> n && n ){ vector<long long> a ; for ( long long i = 0 ; i < n ; i ++ ){ long long x ; cin >> x ; a.push_back(x) ; } cout << merge_sort(a,0,a.size()-1) << endl ; } return 0 ; }