Object detection[NMS] 潛在矩形篩選程式碼 學習
阿新 • • 發佈:2018-11-04
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.collections import PatchCollection
from matplotlib.patches import Rectangle
from itertools import cycle
cycol = cycle('bgrcmk')
# 資料準備
dets = np.random.rand(3, 5) + [0,0,1,1,0]
dets /= 2 # 這個是為了可以在圖裡畫出來。
def py_cpu_nms(dets, thresh):
"""Pure Python NMS baseline."""
for i in range(dets.shape[0]):
a,b,c,d,e = dets[i]
plt.gca().add_patch(
plt.Rectangle((a,b),c - a,d - b, facecolor = 'green', fill = False,
edgecolor='r', linewidth=3)
)
x1 = dets[:, 0]
y1 = dets[:, 1]
x2 = dets[:, 2]
y2 = dets[:, 3]
scores = dets[:, 4]
areas = (x2 - x1 + 1) * (y2 - y1 + 1) # n x 1
print areas.shape, areas
order = scores.argsort()[::-1] # n x 1
print order
keep = []
while order.size > 0:
i = order[ 0]
keep.append(i)
# 以置信度最高的 x_bottom_left 為標準,找不小於它的
xx1 = np.maximum(x1[i], x1[order[1:]])
yy1 = np.maximum(y1[i], y1[order[1:]])
xx2 = np.minimum(x2[i], x2[order[1:]])
yy2 = np.minimum(y2[i], y2[order[1:]])
for i in range(len(xx1)):
plt.gca().add_patch(
plt.Rectangle((xx1[i],yy1[i]),xx2[i] - xx1[i],yy2[i]- yy1[i], facecolor = 'black', fill = False,
edgecolor=cycol.next(), linewidth=3)
)
# 計算置信度最大的矩形與其它矩形相交的面積
w = np.maximum(0.0, xx2 - xx1 + 1)
h = np.maximum(0.0, yy2 - yy1 + 1)
inter = w * h
# 計算 Intersection over Union(IoU)
ovr = inter / (areas[i] + areas[order[1:]] - inter)
# 獲得 從 order[1] 開始的所有滿足條件的矩形的下標
inds = np.where(ovr <= thresh)[0]
# 因為 order[0] 已經包含在 keep 裡面了,所以 inds 要做一個向右的 1 的偏移。
order = order[inds + 1]
plt.show()
return keep
py_cpu_nms(dets, 1)
因為資料是隨機生成的,所以上面程式碼執行的結果可能和下圖不同。