1. 程式人生 > >Object detection[NMS] 潛在矩形篩選程式碼 學習

Object detection[NMS] 潛在矩形篩選程式碼 學習

import numpy as np
import matplotlib.pyplot as plt
from matplotlib.collections import PatchCollection
from matplotlib.patches import Rectangle

from itertools import cycle
cycol = cycle('bgrcmk')

# 資料準備
dets = np.random.rand(3, 5) + [0,0,1,1,0]
dets /= 2 # 這個是為了可以在圖裡畫出來。

def py_cpu_nms(dets,
thresh): """Pure Python NMS baseline.""" for i in range(dets.shape[0]): a,b,c,d,e = dets[i] plt.gca().add_patch( plt.Rectangle((a,b),c - a,d - b, facecolor = 'green', fill = False, edgecolor='r', linewidth=3) )
x1 = dets[:, 0] y1 = dets[:, 1] x2 = dets[:, 2] y2 = dets[:, 3] scores = dets[:, 4] areas = (x2 - x1 + 1) * (y2 - y1 + 1) # n x 1 print areas.shape, areas order = scores.argsort()[::-1] # n x 1 print order keep = [] while order.size > 0: i = order[
0] keep.append(i) # 以置信度最高的 x_bottom_left 為標準,找不小於它的 xx1 = np.maximum(x1[i], x1[order[1:]]) yy1 = np.maximum(y1[i], y1[order[1:]]) xx2 = np.minimum(x2[i], x2[order[1:]]) yy2 = np.minimum(y2[i], y2[order[1:]]) for i in range(len(xx1)): plt.gca().add_patch( plt.Rectangle((xx1[i],yy1[i]),xx2[i] - xx1[i],yy2[i]- yy1[i], facecolor = 'black', fill = False, edgecolor=cycol.next(), linewidth=3) ) # 計算置信度最大的矩形與其它矩形相交的面積 w = np.maximum(0.0, xx2 - xx1 + 1) h = np.maximum(0.0, yy2 - yy1 + 1) inter = w * h # 計算 Intersection over Union(IoU) ovr = inter / (areas[i] + areas[order[1:]] - inter) # 獲得 從 order[1] 開始的所有滿足條件的矩形的下標 inds = np.where(ovr <= thresh)[0] # 因為 order[0] 已經包含在 keep 裡面了,所以 inds 要做一個向右的 1 的偏移。 order = order[inds + 1] plt.show() return keep py_cpu_nms(dets, 1)

因為資料是隨機生成的,所以上面程式碼執行的結果可能和下圖不同。

在這裡插入圖片描述