np.argsort函式
np.argsort函式
覺得有用的話,歡迎一起討論相互學習~Follow Me
- numpy.argsort(a, axis=-1, kind=’quicksort’, order=None)
- 功能: 將矩陣a按照axis排序,並返回排序後的下標
- 引數: a:輸入矩陣, axis:需要排序的維度
- 返回值: 輸出排序後的下標
import numpy as np
x1 = np.array([3, 1, 2])
print(np.argsort(x1))
# [1 2 0]
# axis=0
#沿著行向下(每列)的元素進行排序
x2 = np. array([[1, 5, 7], [3, 2, 4]])
print("axis=0排序\n",np.argsort(x2, axis=0))
# axis=0排序
# [[0 1 1]
# [1 0 0]]
# axis=1
#沿著列向右(每行)的元素進行排序
print("axis=1排序\n",np.argsort(x2, axis=1))
# axis=1排序
# [[0 1 2]
# [1 0 2]]
相關推薦
np.argsort函式
np.argsort函式 覺得有用的話,歡迎一起討論相互學習~Follow Me numpy.argsort(a, axis=-1, kind=’quicksort’, order=None) 功能: 將矩陣a按照axis排序,並返回排序後的下標 引數: a:
np.diff函式
np.diff函式 覺得有用的話,歡迎一起討論相互學習~Follow Me 陣列中a[n]-a[n-1] import numpy as np a=np.array([1, 6, 7, 8, 12]) diff_x1 = np.diff(a) print("diff_x1",diff_x1) # dif
np.cei()、np.linspace()、np.arrange()函式
1.np.ceil()函式 np.ceil()函式為朝正無窮方向取整 a = np.array([-1.7, -1.5, -0.2, 0.2, 1.5, 1.7, 2.0]) print(np.ceil(a)) 輸出結果為:[-1. -1. -0. 1.
np.repeat函式
np.repeat用法 覺得有用的話,歡迎一起討論相互學習~Follow Me np.repeat用於將numpy陣列重複 一維陣列重複三次 import numpy as np # 隨機生成[0,5)之間的數,形狀為(1,4),將此陣列重複3次 pop = np.random.randint(0,
np.repeat函式使用方法
np.repeat用法 覺得有用的話,歡迎一起討論相互學習~Follow Me np.repeat用於將numpy陣列重複 一維陣列重複三次 import numpy as np # 隨機生成[0,5)之間的數,形狀為(1,4),將此陣列重複3次 pop = np.ran
python中將array陣列進行排序並獲取排序後的索引:argsort函式
argsort()函式是將x中的元素從小到大排列,提取其對應的index(索引) 當num>=0時,np.argsort()[num]就可以理解為y[num] 當num<0時,np.argsort()[num]就是把陣列y的元素反向輸出 import
np.arange()函式
np.arange()函式返回一個有終點和起點的固定步長的排列 引數個數情況: np.arange()函式分為一個引數,兩個引數,三個引數三種情況 1)一個引數時,引數值為終點,起點取預設值0,步長取預設值1。 2)兩個引數時,第一個引數為起點,第二個引數為終點,步長取預設值1。 3)三個引
(轉載)Numpy學習(1)——陣列填充np.pad()函式的應用
【時間】2018.11.02 【題目】(轉載)Numpy學習——陣列填充np.pad()函式的應用 概述 本文轉載自 http://www.th7.cn/Program/Python/201712/1284487.shtml ,主要講述了陣
np.expand_dims函式
# -*- coding: utf-8 -*- """ Created on Wed Nov 21 01:51:42 2018 #QQ群:476842922(歡迎加群討論學習) """ import numpy as np x = np.array([1,2]) print(x.shape)
np.argsort詳解
說明 numpy.argsort(a, axis=-1, kind='quicksort', order=None) 功能: 將矩陣a按照axis排序,並返回排序後的下標 引數: a:輸入矩陣, axis:需要排序的維度 返回值: 輸出排序後的下標
Numpy學習——陣列填充np.pad()函式的應用
原文地址:https://blog.csdn.net/zenghaitao0128/article/details/78713663 在卷積神經網路中,為了避免因為卷積運算導致輸出影象縮小和影象邊緣資訊丟失,常常採用影象邊緣填充技術,即在影象四周邊緣填充0,使得卷積運算
Numpy中argsort()函式的用法
argsort()函式的作用是將陣列按照從小到大的順序排序,並按照對應的索引值輸出。 argsort()函式中,當axis=0時,按列排列;當axis=1時,按行排列。如果省略預設按行排列。 下邊通過例子來說明其用法: #!/usr/bin/env python # -*- codi
np.log1p( ) 函式的應用
資料平滑處理 -- log1p( ) 和 exmp1( ) 1. 資料預處理時首先可以對偏度比較大的資料用og1p函式進行轉化,使其更加服從高斯分佈,此步處理可能會使我們後續的分類結果得到一個好的結果。 2. 平滑問題很容易處理掉,導致模型的結果達不到一定的標準,log
python sort() sorted() 與argsort()函式的區別
1、python的內建排序函式有 sort、sorted兩個sort函式只定義在list中,sorted函式對於所有的可迭代序列都可以定義.for example:ls = list([5, 2, 3, 1, 4])new_ls = sorted(ls)/*或者使用ls.sort()即可,直接將ls改變*/p
np.arange函式
返回值: np.arange()函式返回一個有終點和起點的固定步長的排列,如[1,2,3,4,5],起點是1,終點是5,步長為1。 引數個數情況: np.arange()函式分為一個引數,兩個引數,三個引數三種情況 1)一個引數時,引數值為終點,起點取預設
python 中 np.sum()函式 通俗易懂理解!
這一篇部落格保證是我寫的最清楚,最容易理解的部落格!! 眾所周知,sum不傳參的時候,是所有元素的總和。這裡就不說了。 1 sum函式可以傳入一個axis的引數,這個引數怎麼理解呢?這樣理解: 假設我生成一個numpy陣列a,如下 >>> imp
向量點乘與差乘的區別,以及python下np.dot函式
點乘: 點乘的結果是一個實數 a·b=|a|·|b|·cosx x為a,b的夾角 結果為數,且為標量 例: A=[a1,a2,a3],B=[b1,b2,b3] A·B=a1b1+a2b2+a3b3 叉乘(向量積): 當向量a和b不平行
np.zeros和np.ones函式總結
形式: np.zeros (shape, dtype, order) Shape: 可以是一維、二維、三維 其中三維,shape = [m , a, b] 表示生成m個a*b的0矩陣; dtype: 預設為float64, 使用形式dtype=np.int;dtype
np.prod() 函式計算陣列元素乘積等
np.prod()函式用來計算所有元素的乘積,對於有多個維度的陣列可以指定軸,如axis=1指定計算每一行的乘積。 Python format 格式化函式: 例1: >>>"{} {}".format("hello", "world") # 不
np.mgrid函式
程式碼:z = np.mgrid[1:5, 1:3] x, y = z[0], z[1] print(x) print(y)結果:[[1 1] [2 2] [3 3] [4 4]][[1 2] [1 2] [1 2] [1 2]]首先np.mgrid輸出至少是一個三維的向量。