1. 程式人生 > >watershed演算法和影象分割

watershed演算法和影象分割

影象分割

學習opencv是為了工程應用,只學習不應用,等於白學習。下面分析一個影象分割的例子,以加強學習。

目標

  • 學習使用cv::filter2D執行一些laplacian濾波來銳化影象
  • 學習使用cv::distanceTransform來獲得二進位制影象的匯出表示,其中每個畫素的值被替換為最近的背景畫素的距離
  • 學習使用cv::watershed從背景中隔離物體

程式碼

#include <opencv2/opencv.hpp>
#include <iostream>
using namespace std;
using
namespace cv; int main(int, char** argv) { // Load the image Mat src = imread(argv[1]); // Check if everything was fine if (!src.data) return -1; // Show source image imshow("Source Image", src); // Change the background from white to black, since that will help later to extract
// better results during the use of Distance Transform for( int x = 0; x < src.rows; x++ ) { for( int y = 0; y < src.cols; y++ ) { if ( src.at<Vec3b>(x, y) == Vec3b(255,255,255) ) { src.at<Vec3b>(x, y)[0] = 0; src.at<Vec3b>(x, y)[1] = 0
; src.at<Vec3b>(x, y)[2] = 0; } } } // Show output image imshow("Black Background Image", src); // Create a kernel that we will use for accuting/sharpening our image Mat kernel = (Mat_<float>(3,3) << 1, 1, 1, 1, -8, 1, 1, 1, 1); // an approximation of second derivative, a quite strong kernel // do the laplacian filtering as it is // well, we need to convert everything in something more deeper then CV_8U // because the kernel has some negative values, // and we can expect in general to have a Laplacian image with negative values // BUT a 8bits unsigned int (the one we are working with) can contain values from 0 to 255 // so the possible negative number will be truncated Mat imgLaplacian; Mat sharp = src; // copy source image to another temporary one filter2D(sharp, imgLaplacian, CV_32F, kernel); src.convertTo(sharp, CV_32F); Mat imgResult = sharp - imgLaplacian; // convert back to 8bits gray scale imgResult.convertTo(imgResult, CV_8UC3); imgLaplacian.convertTo(imgLaplacian, CV_8UC3); // imshow( "Laplace Filtered Image", imgLaplacian ); imshow( "New Sharped Image", imgResult ); src = imgResult; // copy back // Create binary image from source image Mat bw; cvtColor(src, bw, CV_BGR2GRAY); threshold(bw, bw, 40, 255, CV_THRESH_BINARY | CV_THRESH_OTSU); imshow("Binary Image", bw); // Perform the distance transform algorithm Mat dist; distanceTransform(bw, dist, CV_DIST_L2, 3); // Normalize the distance image for range = {0.0, 1.0} // so we can visualize and threshold it normalize(dist, dist, 0, 1., NORM_MINMAX); imshow("Distance Transform Image", dist); // Threshold to obtain the peaks // This will be the markers for the foreground objects threshold(dist, dist, .4, 1., CV_THRESH_BINARY); // Dilate a bit the dist image Mat kernel1 = Mat::ones(3, 3, CV_8UC1); dilate(dist, dist, kernel1); imshow("Peaks", dist); // Create the CV_8U version of the distance image // It is needed for findContours() Mat dist_8u; dist.convertTo(dist_8u, CV_8U); // Find total markers vector<vector<Point> > contours; findContours(dist_8u, contours, CV_RETR_EXTERNAL, CV_CHAIN_APPROX_SIMPLE); // Create the marker image for the watershed algorithm Mat markers = Mat::zeros(dist.size(), CV_32SC1); // Draw the foreground markers for (size_t i = 0; i < contours.size(); i++) drawContours(markers, contours, static_cast<int>(i), Scalar::all(static_cast<int>(i)+1), -1); // Draw the background marker circle(markers, Point(5,5), 3, CV_RGB(255,255,255), -1); imshow("Markers", markers*10000); // Perform the watershed algorithm watershed(src, markers); Mat mark = Mat::zeros(markers.size(), CV_8UC1); markers.convertTo(mark, CV_8UC1); bitwise_not(mark, mark); // imshow("Markers_v2", mark); // uncomment this if you want to see how the mark // image looks like at that point // Generate random colors vector<Vec3b> colors; for (size_t i = 0; i < contours.size(); i++) { int b = theRNG().uniform(0, 255); int g = theRNG().uniform(0, 255); int r = theRNG().uniform(0, 255); colors.push_back(Vec3b((uchar)b, (uchar)g, (uchar)r)); } // Create the result image Mat dst = Mat::zeros(markers.size(), CV_8UC3); // Fill labeled objects with random colors for (int i = 0; i < markers.rows; i++) { for (int j = 0; j < markers.cols; j++) { int index = markers.at<int>(i,j); if (index > 0 && index <= static_cast<int>(contours.size())) dst.at<Vec3b>(i,j) = colors[index-1]; else dst.at<Vec3b>(i,j) = Vec3b(0,0,0); } } // Visualize the final image imshow("Final Result", dst); waitKey(0); return 0;

程式碼說明

  1. 通過檔案載入影象,並檢查顯示。
    // Load the image
    Mat src = imread(argv[1]);
    // Check if everything was fine
    if (!src.data)
        return -1;
    // Show source image
    imshow("Source Image", src);

2.如果影象背景是白色的,最好轉化成黑色的,在距離變換時這將有助於前景區分物件。(這個操作很生硬,因為很多時候影象都不是純色)

    // Change the background from white to black, since that will help later to extract
    // better results during the use of Distance Transform
    for( int x = 0; x < src.rows; x++ ) {
      for( int y = 0; y < src.cols; y++ ) {
          if ( src.at<Vec3b>(x, y) == Vec3b(255,255,255) ) {
            src.at<Vec3b>(x, y)[0] = 0;
            src.at<Vec3b>(x, y)[1] = 0;
            src.at<Vec3b>(x, y)[2] = 0;
          }
        }
    }
    // Show output image
    imshow("Black Background Image", src);

3.接下來銳化影象來強化前景物體的邊緣。通過使用laplacian濾波。

    // Create a kernel that we will use for accuting/sharpening our image
    Mat kernel = (Mat_<float>(3,3) <<
            1,  1, 1,
            1, -8, 1,
            1,  1, 1); // an approximation of second derivative, a quite strong kernel
    // do the laplacian filtering as it is
    // well, we need to convert everything in something more deeper then CV_8U
    // because the kernel has some negative values,
    // and we can expect in general to have a Laplacian image with negative values
    // BUT a 8bits unsigned int (the one we are working with) can contain values from 0 to 255
    // so the possible negative number will be truncated
    Mat imgLaplacian;
    Mat sharp = src; // copy source image to another temporary one
    filter2D(sharp, imgLaplacian, CV_32F, kernel);
    src.convertTo(sharp, CV_32F);
    Mat imgResult = sharp - imgLaplacian;
    // convert back to 8bits gray scale
    imgResult.convertTo(imgResult, CV_8UC3);
    imgLaplacian.convertTo(imgLaplacian, CV_8UC3);
    // imshow( "Laplace Filtered Image", imgLaplacian );
    imshow( "New Sharped Image", imgResult );

4.轉成灰度影象和二值化。

    // Create binary image from source image
    Mat bw;
    cvtColor(src, bw, CV_BGR2GRAY);
    threshold(bw, bw, 40, 255, CV_THRESH_BINARY | CV_THRESH_OTSU);
    imshow("Binary Image", bw);

5.應用Distance Tranform於二值化的影象。另外,我們通過normalize處理影象。

    // Perform the distance transform algorithm
    Mat dist;
    distanceTransform(bw, dist, CV_DIST_L2, 3);
    // Normalize the distance image for range = {0.0, 1.0}
    // so we can visualize and threshold it
    normalize(dist, dist, 0, 1., NORM_MINMAX);
    imshow("Distance Transform Image", dist);

6.二值化影象然後執行腐蝕操作。

    // Threshold to obtain the peaks
    // This will be the markers for the foreground objects
    threshold(dist, dist, .4, 1., CV_THRESH_BINARY);
    // Dilate a bit the dist image
    Mat kernel1 = Mat::ones(3, 3, CV_8UC1);
    dilate(dist, dist, kernel1);
    imshow("Peaks", dist);

7.從每一個小塊上建立標記給watershed 演算法

    // Create the CV_8U version of the distance image
    // It is needed for findContours()
    Mat dist_8u;
    dist.convertTo(dist_8u, CV_8U);
    // Find total markers
    vector<vector<Point> > contours;
    findContours(dist_8u, contours, CV_RETR_EXTERNAL, CV_CHAIN_APPROX_SIMPLE);
    // Create the marker image for the watershed algorithm
    Mat markers = Mat::zeros(dist.size(), CV_32SC1);
    // Draw the foreground markers
    for (size_t i = 0; i < contours.size(); i++)
        drawContours(markers, contours, static_cast<int>(i), Scalar::all(static_cast<int>(i)+1), -1);
    // Draw the background marker
    circle(markers, Point(5,5), 3, CV_RGB(255,255,255), -1);
    imshow("Markers", markers*10000);

8.最後,我們使用watershed演算法,並且視覺化它。

    // Perform the watershed algorithm
    watershed(src, markers);
    Mat mark = Mat::zeros(markers.size(), CV_8UC1);
    markers.convertTo(mark, CV_8UC1);
    bitwise_not(mark, mark);
//    imshow("Markers_v2", mark); // uncomment this if you want to see how the mark
                                  // image looks like at that point
    // Generate random colors
    vector<Vec3b> colors;
    for (size_t i = 0; i < contours.size(); i++)
    {
        int b = theRNG().uniform(0, 255);
        int g = theRNG().uniform(0, 255);
        int r = theRNG().uniform(0, 255);
        colors.push_back(Vec3b((uchar)b, (uchar)g, (uchar)r));
    }
    // Create the result image
    Mat dst = Mat::zeros(markers.size(), CV_8UC3);
    // Fill labeled objects with random colors
    for (int i = 0; i < markers.rows; i++)
    {
        for (int j = 0; j < markers.cols; j++)
        {
            int index = markers.at<int>(i,j);
            if (index > 0 && index <= static_cast<int>(contours.size()))
                dst.at<Vec3b>(i,j) = colors[index-1];
            else
                dst.at<Vec3b>(i,j) = Vec3b(0,0,0);
        }
    }
    // Visualize the final image
    imshow("Final Result", dst);