1. 程式人生 > >P2962 [USACO09NOV]燈Lights 對抗搜尋

P2962 [USACO09NOV]燈Lights 對抗搜尋

\(\color{#0066ff}{題目描述}\)

貝希和她的閨密們在她們的牛棚中玩遊戲。但是天不從人願,突然,牛棚的電源跳閘了,所有的燈都被關閉了。貝希是一個很膽小的女生,在伸手不見拇指的無盡的黑暗中,她感到驚恐,痛苦與絕望。她希望您能夠幫幫她,把所有的燈都給重新開起來!她才能繼續快樂地跟她的閨密們繼續玩遊戲! 牛棚中一共有N(1 <= N <= 35)盞燈,編號為1到N。這些燈被置於一個非常複雜的網路之中。有M(1 <= M <= 595)條很神奇的無向邊,每條邊連線兩盞燈。 每盞燈上面都帶有一個開關。當按下某一盞燈的開關的時候,這盞燈本身,還有所有有邊連向這盞燈的燈的狀態都會被改變。狀態改變指的是:當一盞燈是開著的時候,這盞燈被關掉;當一盞燈是關著的時候,這盞燈被開啟。 問最少要按下多少個開關,才能把所有的燈都給重新開啟。 資料保證至少有一種按開關的方案,使得所有的燈都被重新開啟。

\(\color{#0066ff}{輸入格式}\)

  • Line 1: Two space-separated integers: N and M.

  • Lines 2..M+1: Each line contains two space-separated integers representing two lights that are connected. No pair will be repeated.

\(\color{#0066ff}{輸出格式}\)

  • Line 1: A single integer representing the minimum number of switches that need to be flipped in order to turn on all the lights.

\(\color{#0066ff}{輸入樣例}\)

5 6 
1 2 
1 3 
4 2 
3 4 
2 5 
5 3 

\(\color{#0066ff}{輸出樣例}\)

3 

\(\color{#0066ff}{題解}\)

看n的範圍,顯然可以對抗搜尋

\(O(2^n)\)枚舉出前半部分的點選或不選,並記錄到達狀態的最小步數(用map)

再搜後半部分點選或不選,只要能跟剛剛的拼上,就更新答案

#include<cstdio>
#include<queue>
#include<vector>
#include<iostream>
#include<cstring>
#include<algorithm>
#include<cctype>
#include<cmath>
#include<map>
#define _ 0
#define LL long long
#define Space putchar(' ')
#define Enter putchar('\n')
#define fuu(x,y,z) for(int x=(y),x##end=z;x<=x##end;x++)
#define fu(x,y,z)  for(int x=(y),x##end=z;x<x##end;x++)
#define fdd(x,y,z) for(int x=(y),x##end=z;x>=x##end;x--)
#define fd(x,y,z)  for(int x=(y),x##end=z;x>x##end;x--)
#define mem(x,y)   memset(x,y,sizeof(x))
#ifndef olinr
inline char getc()
{
    static char buf[100001],*p1=buf,*p2=buf;
    return (p1==p2)&&(p2=(p1=buf)+fread(buf,1,100001,stdin),p1==p2)? EOF:*p1++;
}
#else
#define getc() getchar()
#endif
template<typename T>inline void in(T &x)
{
    int f=1; char ch; x=0;
    while(!isdigit(ch=getc()))(ch=='-')&&(f=-f);
    while(isdigit(ch)) x=x*10+(ch^48),ch=getc();
    x*=f;
}
int n,m;
std::map<LL,int> mp;
LL zt[55];
int mid;
int ans=0x7fffffff;
inline void dfs1(int now,LL z,int step)
{
    if(now==mid+1)
    {
        if(!mp.count(z)) mp[z]=step;
        else mp[z]=std::min(mp[z],step);
        return;
    }
    dfs1(now+1,z^zt[now],step+1);
    dfs1(now+1,z,step);
}
inline void dfs2(int now,LL z,int step)
{
    if(now==n+1)
    {
        if(mp.count(z)) ans=std::min(ans,step+mp[z]);
        return;
    }
    dfs2(now+1,z^zt[now],step+1);
    dfs2(now+1,z,step);
}
int main()
{
    in(n),in(m);
    int x,y;
    fuu(i,1,m) in(x),in(y),zt[x]|=1LL<<(y-1),zt[y]|=1LL<<(x-1);
    fuu(i,1,n) zt[i]|=(1<<(i-1));
    mid=(1+n)>>1;
    dfs1(1,(1LL<<n)-1,0);
    dfs2(mid+1,0LL,0);
    printf("%d",ans);
    return ~~(0^_^0);
}