1. 程式人生 > >人工智慧,機器學習與深度學習,到底是什麼關係

人工智慧,機器學習與深度學習,到底是什麼關係

一、人工智慧

人工智慧(Artificial Intelligence),英文縮寫為AI。它是研究、開發用於模擬、延伸和擴充套件人的智慧的理論、方法、技術及應用系統的一門新的技術科學。

人工智慧是電腦科學的一個分支,它企圖瞭解智慧的實質,並生產出一種新的能以人類智慧相似的方式做出反應的智慧機器,該領域的研究包括語音識別、影象識別、機器人、自然語言處理、智慧搜尋和專家系統等。

人工智慧可以對人的意識、思維的資訊過程的模擬。人工智慧不是人的智慧,但能像人那樣思考、也有可能超過人的智慧。

二、資料探勘

資料探勘(Data Mining),顧名思義就是從海量資料中“挖掘”隱藏資訊,按照教科書的說法,這裡的資料是“大量的、不完全的、有噪聲的、模糊的、隨機的實際應用資料”,資訊指的是“隱含的、規律性的、人們事先未知的、但又是潛在有用的並且最終可理解的資訊和知識”。在商業環境中,企業希望讓存放在資料庫中的資料能“說話”,支援決策。所以,資料探勘更偏向應用。

資料探勘通常與電腦科學有關,並通過統計、線上分析處理、情報檢索、機器學習、專家系統(依靠過去的經驗法則)和模式識別等諸多方法來實現上述目標。

三、機器學習

機器學習(Machine Learning)是指用某些演算法指導計算機利用已知資料得出適當的模型,並利用此模型對新的情境給出判斷的過程。

機器學習的思想並不複雜,它僅僅是對人類生活中學習過程的一個模擬。而在這整個過程中,最關鍵的是資料。

任何通過資料訓練的學習演算法的相關研究都屬於機器學習,包括很多已經發展多年的技術,比如線性迴歸(Linear Regression)、K均值(K-means,基於原型的目標函式聚類方法)、決策樹(Decision Trees,運用概率分析的一種圖解法)、隨機森林(Random Forest,運用概率分析的一種圖解法)、PCA(Principal Component Analysis,主成分分析)、SVM(Support Vector Machine,支援向量機)以及ANN(Artificial Neural Networks,人工神經網路)。

四、深度學習

深度學習(Deep Learning)的概念源於人工神經網路的研究。含多隱層的多層感知器就是一種深度學習結構。深度學習通過組合低層特徵形成更加抽象的高層表示屬性類別或特徵,以發現數據的分散式特徵表示。

深度學習是機器學習研究中的一個新的領域,其動機在於建立、模擬人腦進行分析學習的神經網路,它模仿人腦的機制來解釋資料,例如影象,聲音和文字。

五、人工智慧與機器學習、深度學習的關係

嚴格意義上說,人工智慧和機器學習沒有直接關係,只不過目前機器學習的方法被大量的應用於解決人工智慧的問題而已。目前機器學習是人工智慧的一種實現方式,也是最重要的實現方式。

早期的機器學習實際上是屬於統計學,而非電腦科學的;而二十世紀九十年代之前的經典人工智慧跟機器學習也沒有關係。所以今天的AI和ML有很大的重疊,但並沒有嚴格的從屬關係。

不過如果僅就計算機系內部來說,ML是屬於AI的。AI今天已經變成了一個很泛泛的學科了。

深度學習是機器學習現在比較火的一個方向,其本身是神經網路演算法的衍生,在影象、語音等富媒體的分類和識別上取得了非常好的效果。

所以,如果把人工智慧與機器學習當成兩個學科來看,三者關係如下圖所示:

向左轉|向右轉

如果把深度學習當成人工智慧的一個子學科來看,三者關係如下圖所示

向左轉|向右轉

六、資料探勘與機器學習的關係

資料探勘主要利用機器學習界提供的技術來分析海量資料,利用資料庫界提供的技術來管理海量資料。

向左轉|向右轉

機器學習是資料探勘的一種重要方法,但機器學習是另一門學科,並不從屬於資料探勘,二者相輔相成。