1. 程式人生 > >[洛谷]P1591 階乘數碼 (#高精度 -1.2)

[洛谷]P1591 階乘數碼 (#高精度 -1.2)

題目描述

求n!中某個數碼出現的次數。

輸入輸出格式

輸入格式:

第一行為t(≤10),表示資料組數。接下來t行,每行一個正整數n(≤1000)和數碼a。

輸出格式:

對於每組資料,輸出一個整數,表示n!中a出現的次數。

輸入輸出樣例

輸入樣例#1

2
5 2
7 0

輸出樣例#1

1
2

思路

過載:0分TLE

#include<string>
#include<iostream>
#include<iosfwd>
#include<cmath>
#include<cstring>
#include<stdlib.h>
#include<stdio.h>
#include<cstring>
#define MAX_L 10005 //最大長度,可以修改
using namespace std;
class bign//大整數類模版,用過載寫的(因為我懶得打高精度了(逃)) 
{
public:
	int len, s[MAX_L];//數的長度,記錄陣列
//建構函式
	bign();
	bign(const char*);
	bign(int);
	bool sign;//符號 1正數 0負數
	string toStr() const;//轉化為字串,主要是便於輸出
	friend istream& operator>>(istream &,bign &);//過載輸入流
	friend ostream& operator<<(ostream &,bign &);//過載輸出流
//過載複製
	bign operator=(const char*);
	bign operator=(int);
	bign operator=(const string);
//過載各種比較
	bool operator>(const bign &) const;
	bool operator>=(const bign &) const;
	bool operator<(const bign &) const;
	bool operator<=(const bign &) const;
	bool operator==(const bign &) const;
	bool operator!=(const bign &) const;
//過載四則運算
	bign operator+(const bign &) const;
	bign operator++();
	bign operator++(int);
	bign operator+=(const bign&);
	bign operator-(const bign &) const;
	bign operator--();
	bign operator--(int);
	bign operator-=(const bign&);
	bign operator*(const bign &)const;
	bign operator*(const int num)const;
	bign operator*=(const bign&);
	bign operator/(const bign&)const;
	bign operator/=(const bign&);
//四則運算的衍生運算
	bign operator%(const bign&)const;//取模(餘數)
	bign factorial()const;//階乘
	bign Sqrt()const;//整數開根(向下取整)
	bign pow(const bign&)const;//次方
//一些亂亂的函式
	void clean();
	~bign();
};
#define max(a,b) a>b ? a : b
#define min(a,b) a<b ? a : b
bign::bign()
{
	memset(s, 0, sizeof(s));
	len = 1;
	sign = 1;
}
bign::bign(const char *num)
{ 
	*this = num;
}
bign::bign(int num)
{
	*this = num;
}
string bign::toStr() const
{
	string res;
	res = "";
	for (int i = 0; i < len; i++)
		res = (char)(s[i] + '0') + res;
	if (res == "")
		res = "0";
	if (!sign&&res != "0")
		res = "-" + res;
	return res;
}
istream &operator>>(istream &in, bign &num)
{
	string str;
	in>>str;
	num=str;
	return in;
}
ostream &operator<<(ostream &out, bign &num)
{
	out<<num.toStr();
	return out;
}
bign bign::operator=(const char *num)
{
	memset(s, 0, sizeof(s));
	char a[MAX_L] = "";
	if (num[0] != '-')
		strcpy(a, num);
	else
		for (int i = 1; i < strlen(num); i++)
			a[i - 1] = num[i];
	sign = !(num[0] == '-');
	len = strlen(a);
	for (int i = 0; i < strlen(a); i++)
		s[i] = a[len - i - 1] - 48;
	return *this;
}
bign bign::operator=(int num)
{
	char temp[MAX_L];
	sprintf(temp, "%d", num);
	*this = temp;
	return *this;
}
bign bign::operator=(const string num)
{
	const char *tmp;
	tmp = num.c_str();
	*this = tmp;
	return *this;
}
bool bign::operator<(const bign &num) const
{
	if (sign^num.sign)
		return num.sign;
	if (len != num.len)
		return len < num.len;
	for (int i = len - 1; i >= 0; i--)
		if (s[i] != num.s[i])
			return sign ? (s[i] < num.s[i]) : (!(s[i] < num.s[i]));
	return !sign;
}
bool bign::operator>(const bign&num)const
{
	return num < *this;
}
bool bign::operator<=(const bign&num)const
{
	return !(*this>num);
}
bool bign::operator>=(const bign&num)const
{
	return !(*this<num);
}
bool bign::operator!=(const bign&num)const
{
	return *this > num || *this < num;
}
bool bign::operator==(const bign&num)const
{
	return !(num != *this);
}
bign bign::operator+(const bign &num) const
{
	if (sign^num.sign)
	{
		bign tmp = sign ? num : *this;
		tmp.sign = 1;
		return sign ? *this - tmp : num - tmp;
	}
	bign result;
	result.len = 0;
	int temp = 0;
	for (int i = 0; temp || i < (max(len, num.len)); i++)
	{
		int t = s[i] + num.s[i] + temp;
		result.s[result.len++] = t % 10;
		temp = t / 10;
	}
	result.sign = sign;
	return result;
}
bign bign::operator++()
{ 
	*this = *this + 1;
	return *this;
}
bign bign::operator++(int)
{
	bign old = *this;
	++(*this);
	return old;
}
bign bign::operator+=(const bign &num)
{
	*this = *this + num;		
	return *this;
}
bign bign::operator-(const bign &num) const
{
	bign b=num,a=*this;
	if (!num.sign && !sign)
	{
		b.sign=1;
		a.sign=1;
		return b-a;
	}
	if (!b.sign)
	{
		b.sign=1;
		return a+b;
	}
	if (!a.sign)
	{
		a.sign=1;			
		b=bign(0)-(a+b);
		return b;
	}
	if (a<b)
	{
		bign c=(b-a);
		c.sign=false;
		return c;
	}
	bign result;
	result.len = 0;
	for (int i = 0, g = 0; i < a.len; i++)
	{
		int x = a.s[i] - g;
		if (i < b.len) x -= b.s[i];
		if (x >= 0) g = 0;
		else
		{
			g = 1;
			x += 10;
		}
		result.s[result.len++] = x;
	}
	result.clean();
	return result;
}
bign bign::operator * (const bign &num)const
{
	bign result;
	result.len = len + num.len;
	for (int i = 0; i < len; i++)
    	for (int j = 0; j < num.len; j++)
			result.s[i + j] += s[i] * num.s[j];
	for (int i = 0; i < result.len; i++)
	{
		result.s[i + 1] += result.s[i] / 10;
		result.s[i] %= 10;
	}
	result.clean();
	result.sign = !(sign^num.sign);
	return result;
}
bign bign::operator*(const int num)const
{
	bign x = num;
	bign z = *this;
	return x*z;
}
bign bign::operator*=(const bign&num)
{
	*this = *this * num;
	return *this;
}
bign bign::operator /(const bign&num)const
{
	bign ans;
	ans.len = len - num.len + 1;
	if (ans.len < 0)
	{
		ans.len = 1;
		return ans;
	}
	bign divisor = *this, divid = num;
	divisor.sign = divid.sign = 1;
	int k = ans.len - 1;
	int j = len - 1;
	while (k >= 0)
	{
		while (divisor.s[j] == 0)
			j--;
		if (k > j) k = j;
		char z[MAX_L];
		memset(z, 0, sizeof(z));
		for(int i = j; i >= k; i--)
			z[j - i] = divisor.s[i] + '0';
		bign dividend = z;
		if (dividend < divid)
		{
			k--;
			continue;
		}
		int key = 0;
		while (divid*key<=dividend) key++;
		key--;
		ans.s[k] = key;
		bign temp = divid*key;
		for (int i = 0; i < k; i++)
			temp = temp * 10;
		divisor = divisor - temp;
		k--;
	}
	ans.clean();
	ans.sign = !(sign^num.sign);
	return ans;
}
bign bign::operator/=(const bign&num)
{
	*this = *this / num;
	return *this;
}
bign bign::operator%(const bign& num)const
{
	bign a = *this, b = num;
	a.sign = b.sign = 1;
	bign result, temp = a / b*b;
	result = a - temp;
	result.sign = sign;
	return result;
}
bign bign::pow(const bign& num)const
{
	bign result = 1;
	for (bign i = 0; i < num; i++)
		result = result*(*this);
	return result;
}
bign bign::factorial()const
{
	bign result = 1;
	for(bign i=1;i<=*this;i++)
		result *= i;
	return result;
}
void bign::clean()
{
	if (len == 0) len++;
	while (len > 1 && s[len - 1] == '\0')
		len--;
}
bign bign::Sqrt()const
{
	if(*this<0)return -1;
	if(*this<=1)return *this;
	bign l=0,r=*this,mid;
	while(r-l>1)
	{
		mid=(l+r)/2;
		if(mid*mid>*this)
			r=mid;
		else
			l=mid;
	}
	return l;
}
bign::~bign()
{
}
bign n,m,t,i,j,k,s(1),res,ans;
int main()
{
	ios::sync_with_stdio(false);
	cin.tie(0);
	cin>>t;
	for(k=1;k<=t;k++)
	{
		cin>>n>>m;
		for(i=1;i<=n;i++)
		{
			s=s*i;
		}
		while(s!=0)
		{
			res=s%10;
			if(res==m)
			{
				ans++;
			}
			s=s/10;
		}
		cout<<ans<<endl;
		s=1;
		ans=0;
	}
	return 0;
}

普通做法:AC

#include <stdio.h>
#include <iostream>
#include <string.h>
int a[20001],n,m,t,s;//n!,m是數碼,t是有t位,s存答案,a陣列是一串高精度數 
using namespace std;
inline int multe(int n)
{
	register int i,j;
	for(i=1;i<=t;i++)//先讓a陣列的每一位都能乘以n 
	{
		a[i]*=n;
	}
	for(i=1;i<=t;i++)//從1到位數進行迴圈 
	{
		if(a[i]>9)//如果需要進位 
		{
			a[i+1]+=a[i]/10;//進位 
			a[i]%=10;
			if(i+1>t)//如果現在是最高位 
			{
				t++;//位+1 
			}
		}
	}
	return 0;
}
inline void lxydl()//lxy大佬太強啦! 
{
	for(register int i=t;i>=1;i--)//這個倒或正可能無所謂吧,但是高精度後出來的數字都是倒序的,那我們也倒敘 
	{
		if(a[i]==m)//如果當前的a[i]等於數 
		{
			s++;//算符+1 
		}
	}
}
int main()
{
	ios::sync_with_stdio(false);
	cin.tie(0);
	register int i,j,l;//l是l組資料 
	cin>>l;
	while(l--)
	{
		cin>>n>>m;
		s=0;//答案初始化 
		memset(a,0,sizeof(a));//清除快取 
		a[1]=1;//假設第一位數為1,否則0乘任何數都是0 
		t=1;//至少有1位 
		for(i=1;i<=n;i++)//求n! 
		{
			multe(i);//a陣列乘以i 
		}
		lxydl();//找n!裡有多少m這個數 
		cout<<s<<endl;//輸出答案 
	}
	return 0;
}