AI探索(三)Tensorflow程式設計模型
阿新 • • 發佈:2018-12-13
Tensorflow程式設計模型
。。。。後續完善
import os os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' import numpy as np num_points = 1000 data_array = [] for i in xrange(num_points): x1 = np.random.normal(0.0,0.5) y1 = x1 * 0.1 + 0.3 + np.random.normal(0.0, 0.03) data_array.append([x1, y1]) x_data = [v[0] forv in data_array] y_data = [v[1] for v in data_array] import matplotlib.pyplot as plt plt.plot(x_data, y_data, 'ro', label='Original data') plt.legend() plt.show() import tensorflow as tf w = tf.Variable(tf.random_uniform([1], -1.0, 1.0)) b = tf.Variable(tf.zeros([1])) y = w * x_data + b loss = tf.reduce_mean(tf.square(y - y_data)) optimizer= tf.train.GradientDescentOptimizer(0.5) train = optimizer.minimize(loss) init = tf.global_variables_initializer() sess = tf.Session() sess.run(init) for step in xrange(20): sess.run(train) print(step, sess.run(w), sess.run(b)) print(step, sess.run(loss)) #Graphic display plt.plot(x_data, y_data,'ro', label='Original data') plt.plot(x_data, sess.run(w) * x_data + sess.run(b)) plt.xlabel('x') plt.xlim(-2,2) plt.ylim(0.1,0.6) plt.ylabel('y') plt.legend() plt.show()