NumPy 陣列方法
阿新 • • 發佈:2018-12-16
– Start 下面是 NumPy 提供的一些方法,更多方法參見**官網**。
import numpy as np a = np.fromfunction(lambda x, y: 10*x+y, (5, 4), dtype=int) print(a) # 統計 print(f'minimum of an array: {np.min(a)}') print(f'minimum along an axis: {np.min(a, axis=1)}') print(f'maximum of an array: {np.max(a)}') print(f'maximum along an axis: {np.max(a, axis=1)}') print(f'Sum of an array: {np.sum(a)}') print(f'Sum over a given axis: {np.sum(a, axis=1)}') print(f'average of an array: {np.average(a)}') print(f'average over a given axis: {np.average(a, axis=1)}') # 測試真假 print(f'are all elements true? {np.all(a)}') print(f'is each row true? {np.all(a, axis=1)}') print(f'is any element true? {np.any(a)}') print(f'is any element true for each row? {np.any(a, axis=0)}') # 查詢元素 print(a[np.nonzero(a)]) print(a[np.where(a > 11)]) print(np.where(a > 11, a, -1)) # 四捨五入函式 x = np.array([[1.3, 2.5, 3.7], [-4.2, -5.5, -6.7]]) print(np.ceil(x)) print(np.round(x)) print(np.floor(x))
– 更多參見: – 聲 明:轉載請註明出處 – Last Updated on 2018-10-21 – Written by ShangBo on 2018-10-21 – End