Stanford機器學習 第八講 支援向量機SVM
阿新 • • 發佈:2018-12-19
set type of SVM (default 0) 0 -- C-SVC 1 -- nu-SVC 2 -- one-class SVM 3 -- epsilon-SVR 4 -- nu-SVR-t kernel_type : set type of kernel function (default 2) 0 -- linear: u'*v 1 -- polynomial: (gamma*u'*v + coef0)^degree 2 -- radial basis function: exp(-gamma*|u-v|^2) 3 -- sigmoid: tanh(gamma*u' *v + coef0) 4 -- precomputed kernel (kernel values in training_instance_matrix)-d degree : set degree in kernel function (default 3)-g gamma : set gamma in kernel function (default 1/num_features)-r coef0 : set coef0 in kernel function (default 0)-c cost : set the parameter C of C-SVC, epsilon-SVR, and nu-SVR (default 1)-n nu : set the parameter nu of nu-SVC, one-class SVM, and nu-SVR (default 0.5)-p epsilon : set the epsilon in loss function of epsilon-SVR (default 0.1)-m cachesize : set cache memory size in MB (default 100)-e epsilon : set tolerance of termination criterion (default 0.001)-h shrinking : whether to use the shrinking heuristics, 0 or 1 (default 1)-b probability_estimates : whether to train a SVC or SVR model for probability estimates, 0 or 1 (default 0)-wi weight : set the parameter C of class i to weight*C, for C-SVC (default 1)-v n : n-fold cross validation mode-q : quiet mode (no outputs)