1. 程式人生 > >【 LLS 】Linear Approaches of TOA

【 LLS 】Linear Approaches of TOA

Linear Approaches

The basic idea of the linear localization methodology is to convert the nonlinear expressions of Equations (1) into a set of linear equations with zero - mean disturbances, assuming that the measurement errors are sufficiently small.

線性定位方法的基本思想是將等式(1)的非線性表示式轉換為一組具有零均值擾動的線性方程,假設測量誤差足夠小。

                              (1)


As the corresponding optimization cost functions are now unimodal, it is always guaranteed to obtain the global solution. Three linear positioning approaches, namely, LLS, WLLS, and subspace estimators, will be presented as follows.

由於相應的優化成本函式現在是單峰的,因此始終保證獲得全域性解決方案。 三種線性定位方法,即LLS,WLLS和子空間估計器將如下呈現。
Analogous to NLS and ML estimators, the WLLS method is a weighted version of the LLS scheme and it provides higher localization accuracy, although the mean and covariance of the errors in the linear equations are required for the weight computation. On the other hand, the subspace technique fi rst relates x with the squared pairwise distances among the source and receivers. Source localization is
then achieved using an eigenvalue decomposition ( EVD ) procedure.

類似於NLS和ML估計器,WLLS方法是LLS方案的加權版本,並且它提供更高的定位精度,儘管線性方程中的誤差的均值和協方差是權重計算所需的。 另一方面,子空間技術首先將x與源和接收器之間的平方成對距離相關聯。 然後使用特徵值分解(EVD)過程實現源定位。

LLS

The LLS approach attempts to reorganize Equations (1) into linear equations in x , and the position is then estimated by using the ordinary LS technique. For TOA, TDOA, and RSS measurements, we have to introduce an intermediate variable, which is a function of the source position in the linearization process. The LLS location estimators based on TOA, TDOA, RSS, and DOA information are developed one by one as follows.

LLS方法試圖將方程(1)重組為x中的線性方程,然後使用普通LS技術估計位置。 對於 TOA 測量,我們必須引入一箇中間變數,它是線性化過程中源位置的函式。 基於 TOA 資訊的LLS位置估計器如下。

TOA - Based Positioning

To convert the TOA measurements into linear models in x , we first consider squaring both sides of Equation (1) to obtain

  (2)

Let

                                                                                   (3)

be the noise component in Equation (2) and introduce a dummy variable R of the form

是等式(2)中的噪聲分量,並引入形式的虛擬變數R.

                                                                                                                                                                     (4)

Substituting Equations (3) and (4) into (2) yields

                                      (5)

Let

                                                                       (6)

                                                                                   (7)

                                                  (8)

and

                                                                             (9)

The matrix form for Equation (5) is then

                                                                                                    (10)

where the observed \bold{r}_{TOA} of Equation 

                                                                          (11)

 is now transformed to b , A is constructed from the known receiver positions, and θ contains the source location to be determined. When \{ m_{TOA,l}\} are sufficiently small such that

\bold{r}_{TOA} 現在轉換為 b,由已知的接收器位置構成,θ 包含要確定的源位置。當  \{ m_{TOA,l}\} 足夠小

                                        (12)

can be considered a zero - mean vector; that is, E { q } ≈ 0 , we can approximate Equation (11)as

                                                                                                                   (13)

the LS cost function based on Equation (13) is

                                   (14)

which is a quadratic function in \bold{ \tilde \theta }, indicating that there is a unique minimum in \bold{J}_{LLS,TOA}(\bold{ \tilde \theta}).

The LLS estimate corresponds to

                                                                           (15)

which can be easily computed by differentiating Equation (14) with respect to  \bold{ \tilde \theta } and by setting the resultant expression to zero:

                                            (16)

The LLS position estimate is simply extracted from the fi rst and second entries of \bold{ \tilde \theta }; that is,

                                                                                                (17)

In the literature, Equation (17) is also referred to as the LS calibration method  .

在文獻中,等式(17)也稱為LS校準方法。

              (5)

An alternative way for LLS TOA - based positioning is to eliminate R in Equation (5) by employing the differences between any two equations [18] . For simplicity but without loss of generality, subtracting the first equation of Equation (5) from the remaining ( L − 1) equations, R is removed and we have  

                                            (18)

or in matrix form

                                                                                         (19)

where A , q , and b are now modifi ed to

                                        (20)

                 (21)

                             (22)

Assuming sufficiently small noise conditions and following Equations (12)——(16), a variant of the LLS method using TOA measurements is

                              (23)