1. 程式人生 > >【 Notes 】ML ALGORITHMS of TOA

【 Notes 】ML ALGORITHMS of TOA

ML方法是NLS方法的一個推廣版本,具體接著看:

Assuming that the error distribution is known, the ML approach maximizes the PDFs of TOA measurements to obtain the source location. When the disturbances in the measurements are zero - mean Gaussian distributed, it is shown in the following that maximization of Equations 1  will correspond to a weighted version of the NLS scheme.

l 個r_{TOA,l}的PDF:

向量形式:

                           (1)

the covariance matrix for  \bold{r_{TOA}}

To facilitate the maximization of Equation (1) , we consider its logarithmic version:

               (2)

As the first term is independent of x , maximizing Equation (2) is in fact equivalent to minimizing the second term, the ML estimate is

                                                        (3)

or we can write

                                                                                                                          (4)

where \bold{ J_{ML,TOA}(\tilde x)} denotes the ML cost function for TOA - based positioning, which has the form of

                                                          (5)

Comparing Equations (4) and (5) , it is observed that in the presence of zero - mean Gaussian noise, the ML estimator generalizes the NLS method because the former is a weighted version of the latter.

比較等式(4)和(5),觀察到在存在零均值高斯噪聲的情況下,ML估計器推廣了NLS方法,因為前者是後者的加權版本。

Intuitively speaking, when \sigma^2_{TOA,l} is large, which corresponds to a large noise inr_{TOA,l} , a small weight of 1/\sigma^2_{TOA,l} is employed in the squared term of 

and vice versa. 

When \bold{C^{-1}_{TOA}} is proportional to the identity matrix or \sigma^2_{TOA,l},l = 1,2,..,L are identical, the ML estimator is reduced to the NLS method. To compute Equation (4) , we can follow the numerical methods discussed in the NLS approach. In particular, the Newton – Raphson procedure for Equation (4) is

                              (6)

                                                            (7)

                   (8)

               (9)

               (10)

                   (11)

On the other hand, the corresponding Gauss – Newton and steepest descent algorithms are, respectively,

       (12)

                      (13)

下面的博文,將對這三種方法進行TOA定位模擬。