hadoop原始碼解析之hdfs寫資料全流程分析---客戶端處理
DFSOutputStream介紹
DFSOutputStream概況介紹
這一節我們介紹hdfs寫資料過程中,客戶端的處理部分。客戶端的處理主要是用到了DFSOutputStream物件,從名字我們可以看出,這個是對dfs檔案系統輸出流的一個封裝,接下來我們先來詳細瞭解一下用到的幾個重要的類和其中的變數。
DFSOutputStream的主要功能在類的註釋中其實已經說的很清楚了,大家先看下,英文不好,翻譯的可能不太好。
/****************************************************************
* DFSOutputStream從位元組流建立檔案
* DFSOutputStream creates files from a stream of bytes.
*
* 客戶端寫的資料DFSOutputStream臨時快取了起來。資料被分解了一個個的資料包(DFSPacket),
* 每個DFSPacket一般是64K大小,一個DFSPacket又包含了若干個塊(chunks),每個chunk一般是512k並且
* 有一個對應的校驗和。
* The client application writes data that is cached internally by
* this stream. Data is broken up into packets, each packet is
* typically 64K in size. A packet comprises of chunks. Each chunk
* is typically 512 bytes and has an associated checksum with it.
*
* 當一個客戶端程式寫的的資料填充慢了當前的資料包的時候(DFSPacket型別的變數currentPacket),
* 就會被有順序的放入dataQueue佇列中。DataStreamer執行緒從dataQueue中獲取資料包(packets),
* 傳送該資料包給資料管道(pipeline)中的第一個datanode, 然後把該資料包從dataQueue中移除,新增到ackQueue。
* ResponseProcessor會從各個datanode中接收ack確認訊息。
* 當對於一個DFSPacket的成功的ack確認訊息被所有的datanode接收到了,ResponseProcessor將其從ackQueue列表中移除
* When a client application fills up the currentPacket, it is
* enqueued into dataQueue. The DataStreamer thread picks up
* packets from the dataQueue, sends it to the first datanode in
* the pipeline and moves it from the dataQueue to the ackQueue.
* The ResponseProcessor receives acks from the datanodes. When an
* successful ack for a packet is received from all datanodes, the
* ResponseProcessor removes the corresponding packet from the
* ackQueue.
*
*
* 在有錯誤發生的時候,所有的未完成的資料包從ackQueue佇列移除,一個新的不包含損壞的datanode的管道將會被建立,
* DataStreamer執行緒將重新開始從dataQueue獲取資料包傳送。
* In case of error, all outstanding packets and moved from
* ackQueue. A new pipeline is setup by eliminating the bad
* datanode from the original pipeline. The DataStreamer now
* starts sending packets from the dataQueue.
****************************************************************/
@InterfaceAudience.Private
public class DFSOutputStream extends FSOutputSummer
implements Syncable, CanSetDropBehind { }
DFSOutputStream重要的變數
最重要的兩個佇列,dataQueue和ackQueue,這兩個佇列都是典型的生產者、消費者模式,對於dataQueue來說,生產者是客戶端,消費者是DataStreamer,對於ackQueue來說,生產者是DataStreamer,消費者是ResponseProcessor
/**
* dataQueue和ackQueue是兩個非常重要的變數,他們是儲存了DFSPacket物件的連結串列。
* dataQueue列表用於儲存待發送的資料包,客戶端寫入的資料,先臨時存到這個佇列裡。
* ackQueue是回覆佇列,從datanode收到回覆訊息之後,存到這裡佇列裡。
*
*/
// both dataQueue and ackQueue are protected by dataQueue lock
private final LinkedList<DFSPacket> dataQueue = new LinkedList<DFSPacket>();
private final LinkedList<DFSPacket> ackQueue = new LinkedList<DFSPacket>();
private DFSPacket currentPacket = null;//當前正在處理的資料包
private DataStreamer streamer;
private long currentSeqno = 0;
private long lastQueuedSeqno = -1;
private long lastAckedSeqno = -1;
private long bytesCurBlock = 0; // bytes written in current block 當前的資料塊有多少個位元組
private int packetSize = 0; // write packet size, not including the header.
private int chunksPerPacket = 0;
資料處理執行緒類DataStreamer
DataStreamer是用於處理資料的核心類,我們看下注釋中的解釋
/**
* DataStreamer負責往管道中的datanodes傳送資料包, 從namenode中獲取塊的位置資訊和blockid,然後開始
* 將資料包傳送到datanode的管道。
* 每個包都有一個序列號。
* 當所有的資料包都發送完畢並且都接收到回覆訊息之後,DataStreamer關閉當前的block
* The DataStreamer class is responsible for sending data packets to the
* datanodes in the pipeline. It retrieves a new blockid and block locations
* from the namenode, and starts streaming packets to the pipeline of
* Datanodes. Every packet has a sequence number associated with
* it. When all the packets for a block are sent out and acks for each
* if them are received, the DataStreamer closes the current block.
*/
class DataStreamer extends Daemon {
private volatile boolean streamerClosed = false;
private volatile ExtendedBlock block; // its length is number of bytes acked
private Token<BlockTokenIdentifier> accessToken;
private DataOutputStream blockStream;//傳送資料的輸出流
private DataInputStream blockReplyStream;//輸入流,即接收ack訊息的流
private ResponseProcessor response = null;
private volatile DatanodeInfo[] nodes = null; // list of targets for current block 將要傳送的datanode的集合
private volatile StorageType[] storageTypes = null;
private volatile String[] storageIDs = null;
......................
}
響應處理類ResponseProcessor
ResponseProcessor是DataStreamer的子類,用於處理接收到的ack資料
//處理從datanode返回的相應資訊,當相應到達的時候,將DFSPacket從ackQueue移除
// Processes responses from the datanodes. A packet is removed
// from the ackQueue when its response arrives.
//
private class ResponseProcessor extends Daemon {}
處理流程
客戶端發資料到dataQueue
建立檔案之後返回一個FSDataOutputStream物件,呼叫write方法寫資料,最終呼叫了org.apache.hadoop.fs.FSOutputSummer.write(byte[], int, int);
write呼叫write1()方法迴圈寫入len長度的資料,當寫滿一個數據塊的時候,呼叫抽象方法writeChunk來寫入資料,具體的實現則是org.apache.hadoop.hdfs.DFSOutputStream類中的同名方法,
具體的寫入是在writeChunkImpl方法中,具體的程式碼如下:
private synchronized void writeChunkImpl(byte[] b, int offset, int len,
byte[] checksum, int ckoff, int cklen) throws IOException {
dfsClient.checkOpen();
checkClosed();
if (len > bytesPerChecksum) {
throw new IOException("writeChunk() buffer size is " + len +
" is larger than supported bytesPerChecksum " +
bytesPerChecksum);
}
if (cklen != 0 && cklen != getChecksumSize()) {
throw new IOException("writeChunk() checksum size is supposed to be " +
getChecksumSize() + " but found to be " + cklen);
}
if (currentPacket == null) {
currentPacket = createPacket(packetSize, chunksPerPacket,
bytesCurBlock, currentSeqno++, false);
if (DFSClient.LOG.isDebugEnabled()) {
DFSClient.LOG.debug("DFSClient writeChunk allocating new packet seqno=" +
currentPacket.getSeqno() +
", src=" + src +
", packetSize=" + packetSize +
", chunksPerPacket=" + chunksPerPacket +
", bytesCurBlock=" + bytesCurBlock);
}
}
currentPacket.writeChecksum(checksum, ckoff, cklen);
currentPacket.writeData(b, offset, len);
currentPacket.incNumChunks();
bytesCurBlock += len;
// If packet is full, enqueue it for transmission
//當一個DFSPacket寫滿了,則呼叫waitAndQueueCurrentPacket將其加入
if (currentPacket.getNumChunks() == currentPacket.getMaxChunks() ||
bytesCurBlock == blockSize) {
if (DFSClient.LOG.isDebugEnabled()) {
DFSClient.LOG.debug("DFSClient writeChunk packet full seqno=" +
currentPacket.getSeqno() +
", src=" + src +
", bytesCurBlock=" + bytesCurBlock +
", blockSize=" + blockSize +
", appendChunk=" + appendChunk);
}
waitAndQueueCurrentPacket();
// If the reopened file did not end at chunk boundary and the above
// write filled up its partial chunk. Tell the summer to generate full
// crc chunks from now on.
if (appendChunk && bytesCurBlock%bytesPerChecksum == 0) {
appendChunk = false;
resetChecksumBufSize();
}
if (!appendChunk) {
int psize = Math.min((int)(blockSize-bytesCurBlock), dfsClient.getConf().writePacketSize);
computePacketChunkSize(psize, bytesPerChecksum);
}
//
// if encountering a block boundary, send an empty packet to
// indicate the end of block and reset bytesCurBlock.
//
if (bytesCurBlock == blockSize) {
currentPacket = createPacket(0, 0, bytesCurBlock, currentSeqno++, true);
currentPacket.setSyncBlock(shouldSyncBlock);
waitAndQueueCurrentPacket();
bytesCurBlock = 0;
lastFlushOffset = 0;
}
}
}
當packet滿了的時候,呼叫waitAndQueueCurrentPacket方法,將資料包放入dataQueue佇列中,waitAndQueueCurrentPacket方法開始的時候會進行packet的大小的判斷,當dataQueue和ackQueue的值大於writeMaxPackets(預設80)時候,就等地,直到有足夠的空間.
private void waitAndQueueCurrentPacket() throws IOException {
synchronized (dataQueue) {
try {
// If queue is full, then wait till we have enough space
boolean firstWait = true;
try {
//當大小不夠的時候就wait
while (!isClosed() && dataQueue.size() + ackQueue.size() >
dfsClient.getConf().writeMaxPackets) {
..................
try {
dataQueue.wait();
} catch (InterruptedException e) {
..............
}
}
} finally {
...............
}
checkClosed();
//入佇列
queueCurrentPacket();
} catch (ClosedChannelException e) {
}
}
}
最後呼叫了queueCurrentPacket方法,將packet真正的放入了佇列中
private void queueCurrentPacket() {
synchronized (dataQueue) {
if (currentPacket == null) return;
currentPacket.addTraceParent(Trace.currentSpan());
dataQueue.addLast(currentPacket);//將資料包放到了佇列的尾部
lastQueuedSeqno = currentPacket.getSeqno();
if (DFSClient.LOG.isDebugEnabled()) {
DFSClient.LOG.debug("Queued packet " + currentPacket.getSeqno());
}
currentPacket = null;//當前packet置空,用於下一個資料包的寫入
dataQueue.notifyAll();//喚醒所有在dataQueue上的執行緒去處理
}
}
最終通過方法queueCurrentPacket將DFSPacket寫入dataQueue,即dataQueue.addLast(currentPacket);
並通過dataQueue.notifyAll();喚醒dataQueue上面等待的所有執行緒來處理資料
private void queueCurrentPacket() {
synchronized (dataQueue) {
if (currentPacket == null) return;
currentPacket.addTraceParent(Trace.currentSpan());
dataQueue.addLast(currentPacket);
lastQueuedSeqno = currentPacket.getSeqno();
if (DFSClient.LOG.isDebugEnabled()) {
DFSClient.LOG.debug("Queued packet " + currentPacket.getSeqno());
}
currentPacket = null;
dataQueue.notifyAll();
}
}
DataStreamer處理dataQueue中的資料
DataStreamer處理髮送資料的核心邏輯在run方法中。
處理錯誤
在開始的時候,首先判斷是否有錯誤
具體的處理方法是private的processDatanodeError方法,如果發現了錯誤,就講ack佇列裡的packet全部放回dataQueue中,然後建立一個新的流重新發送資料。
建立輸出資料流,傳送資料
通過nextBlockOutputStream()方法建立到datanode的輸出流。
向namenode申請資料塊
locateFollowingBlock方法申請資料塊,具體的程式碼是
dfsClient.namenode.addBlock(src, dfsClient.clientName,
block, excludedNodes, fileId, favoredNodes);
dfsClient拿到namenode的代理,然後通過addBlock方法來申請新的資料塊,addBlock方法申請資料塊的時候還會提交上一個塊,也就是引數中的block,即上一個資料塊。
excludedNodes引數表示了申請資料塊的時候需要排除的datanode列表,
favoredNodes引數表示了優先選擇的datanode列表。
連線到第一個datanode
成功申請了資料塊之後,會返回一個LocatedBlock物件,裡面包含了datanode的相關資訊。
然後通過createBlockOutputStream方法連線到第一個datanode,具體就是new了一個DataOutputStream物件來連線到datanode。 然後構造了一個Sender物件,來向DataNode傳送操作碼是80的寫block的輸出流,
傳送到datanode的資料,datanode通過DataXceiver接收處理
new Sender(out).writeBlock(blockCopy, nodeStorageTypes[0], accessToken,
dfsClient.clientName, nodes, nodeStorageTypes, null, bcs,
nodes.length, block.getNumBytes(), bytesSent, newGS,
checksum4WriteBlock, cachingStrategy.get(), isLazyPersistFile,
(targetPinnings == null ? false :targetPinnings[0]), targetPinnings);
申請block,然後建立到datanode的連線,是在一個do while迴圈中做的,如果失敗了會嘗試重新連線,預設三次。
建立管道
nextBlockOutputStream方法成功的返回了datanode的資訊之後,setPipeline方法建立到datanode的管道資訊,這個方法比較簡單,就是用申請到的datanode給相應的變數賦值。
private void setPipeline(LocatedBlock lb) {
setPipeline(lb.getLocations(), lb.getStorageTypes(), lb.getStorageIDs());
}
private void setPipeline(DatanodeInfo[] nodes, StorageType[] storageTypes,
String[] storageIDs) {
this.nodes = nodes;
this.storageTypes = storageTypes;
this.storageIDs = storageIDs;
}
初始化資料流
initDataStreaming方法主要就是根據datanode列表建立ResponseProcessor物件,並且調動start方法啟動,並將狀態設定為DATA_STREAMING
/**
* Initialize for data streaming
*/
private void initDataStreaming() {
this.setName("DataStreamer for file " + src +
" block " + block);
response = new ResponseProcessor(nodes);
response.start();
stage = BlockConstructionStage.DATA_STREAMING;
}
傳送資料包
一切準備就緒之後,從dataQueue頭部拿出一個packet,放入ackQueue的尾部,並且喚醒在dataQueue上等待的所有執行緒,通過 one.writeTo(blockStream);傳送資料包。
// send the packet
Span span = null;
synchronized (dataQueue) {
// move packet from dataQueue to ackQueue
if (!one.isHeartbeatPacket()) {
span = scope.detach();
one.setTraceSpan(span);
dataQueue.removeFirst();
ackQueue.addLast(one);
dataQueue.notifyAll();
}
}
if (DFSClient.LOG.isDebugEnabled()) {
DFSClient.LOG.debug("DataStreamer block " + block +
" sending packet " + one);
}
// write out data to remote datanode
TraceScope writeScope = Trace.startSpan("writeTo", span);
try {
one.writeTo(blockStream);
blockStream.flush();
} catch (IOException e) {
// HDFS-3398 treat primary DN is down since client is unable to
// write to primary DN. If a failed or restarting node has already
// been recorded by the responder, the following call will have no
// effect. Pipeline recovery can handle only one node error at a
// time. If the primary node fails again during the recovery, it
// will be taken out then.
tryMarkPrimaryDatanodeFailed();
throw e;
} finally {
writeScope.close();
}
關閉資料流
當dataQueue中的所有資料塊都發送完畢,並且確保都收到ack訊息之後,客戶端的寫入操作就結束了,呼叫endBlock方法來關閉相應的流,
// Is this block full?
if (one.isLastPacketInBlock()) {
// wait for the close packet has been acked
synchronized (dataQueue) {
while (!streamerClosed && !hasError &&
ackQueue.size() != 0 && dfsClient.clientRunning) {
dataQueue.wait(1000);// wait for acks to arrive from datanodes
}
}
if (streamerClosed || hasError || !dfsClient.clientRunning) {
continue;
}
endBlock();
}
關閉響應,關閉資料流,將管道置空,狀態變成PIPELINE_SETUP_CREATE
private void endBlock() {
if(DFSClient.LOG.isDebugEnabled()) {
DFSClient.LOG.debug("Closing old block " + block);
}
this.setName("DataStreamer for file " + src);
closeResponder();
closeStream();
setPipeline(null, null, null);
stage = BlockConstructionStage.PIPELINE_SETUP_CREATE;
}
ResponseProcessor處理回覆訊息
這塊邏輯相對比較簡單
@Override
public void run() {
setName("ResponseProcessor for block " + block);
PipelineAck ack = new PipelineAck();
TraceScope scope = NullScope.INSTANCE;
while (!responderClosed && dfsClient.clientRunning && !isLastPacketInBlock) {
// process responses from datanodes.
try {
//從ack佇列裡讀取packet
// read an ack from the pipeline
long begin = Time.monotonicNow();
ack.readFields(blockReplyStream);
..............
//一切都處理成功之後,將其從ack佇列中刪除
synchronized (dataQueue) {
scope = Trace.continueSpan(one.getTraceSpan());
one.setTraceSpan(null);
lastAckedSeqno = seqno;
pipelineRecoveryCount = 0;
ackQueue.removeFirst();
dataQueue.notifyAll();
one.releaseBuffer(byteArrayManager);
}
} catch (Exception e) {
//如果遇到了異常,並沒有立即處理,而是放到了一個AtomicReference型別的物件中,
if (!responderClosed) {
if (e instanceof IOException) {
setLastException((IOException)e);
}
............
}
} finally {
scope.close();
}
}
}