1. 程式人生 > >AlexNet(Pytorch實現)

AlexNet(Pytorch實現)

github部落格傳送門
部落格園傳送門

論文在此: ImageNet Classification with Deep Convolutional Neural Networks

網路結構圖:

AlexNet網路結構圖
AlexNet

Pytorch程式碼實現:

import torch.nn as nn


class AlexNet(nn.Module):
    def __init__(self, num_classes=1000):
        super(AlexNet, self).__init__()
        self.features = nn.Sequential(
            nn.
Conv2d(3, 64, kernel_size=11, stride=4, padding=2), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=3, stride=2), nn.Conv2d(64, 192, kernel_size=5, padding=2), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=3, stride=2), nn.Conv2d(
192, 384, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.Conv2d(384, 256, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.Conv2d(256, 256, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=3, stride=
2), ) self.classifier = nn.Sequential( nn.Linear(256 * 6 * 6, 4096), nn.ReLU(inplace=True), nn.Linear(4096, 4096), nn.ReLU(inplace=True), nn.Linear(4096, num_classes), ) def forward(self, x): x = self.features(x) x = x.view(x.size(0), 256 * 6 * 6) x = self.classifier(x) return x if __name__ == '__main__': # Example net = AlexNet() print(net)