K近鄰分類演算法實現 in Python
阿新 • • 發佈:2018-12-27
K近鄰(KNN):分類演算法
* KNN是non-parametric分類器(不做分佈形式的假設,直接從資料估計概率密度),是memory-based learning.
* KNN不適用於高維資料(curse of dimension)
* Machine Learning的Python庫很多,比如mlpy(更多packages),這裡實現只是為了掌握方法
* KNN演算法複雜度高(可用KD樹優化,C中可以用libkdtree或者ANN)
* k越小越容易過擬合,但是k很大會降分類精度(設想極限情況:k=1和k=N(樣本數))
本文不介紹理論了,註釋見程式碼。
KNN.py
-------------------from numpy import * import operator class KNN: def createDataset(self): group = array([[1.0,1.1],[1.0,1.0],[0,0],[0,0.1]]) labels = ['A','A','B','B'] return group,labels def KnnClassify(self,testX,trainX,labels,K): [N,M]=trainX.shape #calculate the distance between testX and other training samples difference = tile(testX,(N,1)) - trainX # tile for array and repeat for matrix in Python, == repmat in Matlab difference = difference ** 2 # take pow(difference,2) distance = difference.sum(1) # take the sum of difference from all dimensions distance = distance ** 0.5 sortdiffidx = distance.argsort() # find the k nearest neighbours vote = {} #create the dictionary for i in range(K): ith_label = labels[sortdiffidx[i]]; vote[ith_label] = vote.get(ith_label,0)+1 #get(ith_label,0) : if dictionary 'vote' exist key 'ith_label', return vote[ith_label]; else return 0 sortedvote = sorted(vote.iteritems(),key = lambda x:x[1], reverse = True) # 'key = lambda x: x[1]' can be substituted by operator.itemgetter(1) return sortedvote[0][0] k = KNN() #create KNN object group,labels = k.createDataset() cls = k.KnnClassify([0,0],group,labels,3) print cls
執行:
1. 在Python Shell 中可以執行KNN.py
>>>import os
>>>os.chdir("/Users/mba/Documents/Study/Machine_Learning/Python/KNN")
>>>execfile("KNN.py")
輸出B
(B表示類別)
2. 或者terminal中直接執行
$ python KNN.py
3. 也可以不在KNN.py中寫輸出,而選擇在Shell中獲得結果,i.e.,
>>>import KNN
>>> KNN.k.KnnClassify([0,0],KNN.group,KNN.labels,3)
關於Python更多的學習資料將繼續更新,敬請關注本部落格和新浪微博Rachel Zhang。