【模式識別】K-近鄰分類演算法KNN
阿新 • • 發佈:2019-01-11
K-近鄰(K-Nearest Neighbors, KNN)是一種很好理解的分類演算法,簡單說來就是從訓練樣本中找出K個與其最相近的樣本,然後看這K個樣本中哪個類別的樣本多,則待判定的值(或說抽樣)就屬於這個類別。
KNN演算法的步驟
- 計算已知類別資料集中每個點與當前點的距離;
- 選取與當前點距離最小的K個點;
- 統計前K個點中每個類別的樣本出現的頻率;
- 返回前K個點出現頻率最高的類別作為當前點的預測分類。
OpenCV中使用CvKNearest
OpenCV中實現CvKNearest類可以實現簡單的KNN訓練和預測。int main() { float labels[10] = {0,0,0,0,0,1,1,1,1,1}; Mat labelsMat(10, 1, CV_32FC1, labels); cout<<labelsMat<<endl; float trainingData[10][2]; srand(time(0)); for(int i=0;i<5;i++){ trainingData[i][0] = rand()%255+1; trainingData[i][1] = rand()%255+1; trainingData[i+5][0] = rand()%255+255; trainingData[i+5][1] = rand()%255+255; } Mat trainingDataMat(10, 2, CV_32FC1, trainingData); cout<<trainingDataMat<<endl; CvKNearest knn; knn.train(trainingDataMat,labelsMat,Mat(), false, 2 ); // Data for visual representation int width = 512, height = 512; Mat image = Mat::zeros(height, width, CV_8UC3); Vec3b green(0,255,0), blue (255,0,0); for (int i = 0; i < image.rows; ++i){ for (int j = 0; j < image.cols; ++j){ const Mat sampleMat = (Mat_<float>(1,2) << i,j); Mat response; float result = knn.find_nearest(sampleMat,1); if (result !=0){ image.at<Vec3b>(j, i) = green; } else image.at<Vec3b>(j, i) = blue; } } // Show the training data for(int i=0;i<5;i++){ circle( image, Point(trainingData[i][0], trainingData[i][1]), 5, Scalar( 0, 0, 0), -1, 8); circle( image, Point(trainingData[i+5][0], trainingData[i+5][1]), 5, Scalar(255, 255, 255), -1, 8); } imshow("KNN Simple Example", image); // show it to the user waitKey(10000); }
使用的是之前BP神經網路中的例子,分類結果如下:
預測函式find_nearest()除了輸入sample引數外還有些其他的引數:
float CvKNearest::find_nearest(const Mat& samples, int k, Mat* results=0,
const float** neighbors=0, Mat* neighborResponses=0, Mat* dist=0 )
即,samples為樣本數*特徵數的浮點矩陣;K為尋找最近點的個數;results與預測結果;neibhbors為k*樣本數的指標陣列(輸入為const,實在不知為何如此設計);neighborResponse為樣本數*k的每個樣本K個近鄰的輸出值;dist為樣本數*k的每個樣本K個近鄰的距離。
另一個例子
OpenCV refman也提供了一個類似的示例,使用CvMat格式的輸入引數:分類結果:int main( int argc, char** argv ) { const int K = 10; int i, j, k, accuracy; float response; int train_sample_count = 100; CvRNG rng_state = cvRNG(-1); CvMat* trainData = cvCreateMat( train_sample_count, 2, CV_32FC1 ); CvMat* trainClasses = cvCreateMat( train_sample_count, 1, CV_32FC1 ); IplImage* img = cvCreateImage( cvSize( 500, 500 ), 8, 3 ); float _sample[2]; CvMat sample = cvMat( 1, 2, CV_32FC1, _sample ); cvZero( img ); CvMat trainData1, trainData2, trainClasses1, trainClasses2; // form the training samples cvGetRows( trainData, &trainData1, 0, train_sample_count/2 ); cvRandArr( &rng_state, &trainData1, CV_RAND_NORMAL, cvScalar(200,200), cvScalar(50,50) ); cvGetRows( trainData, &trainData2, train_sample_count/2, train_sample_count ); cvRandArr( &rng_state, &trainData2, CV_RAND_NORMAL, cvScalar(300,300), cvScalar(50,50) ); cvGetRows( trainClasses, &trainClasses1, 0, train_sample_count/2 ); cvSet( &trainClasses1, cvScalar(1) ); cvGetRows( trainClasses, &trainClasses2, train_sample_count/2, train_sample_count ); cvSet( &trainClasses2, cvScalar(2) ); // learn classifier CvKNearest knn( trainData, trainClasses, 0, false, K ); CvMat* nearests = cvCreateMat( 1, K, CV_32FC1); for( i = 0; i < img->height; i++ ) { for( j = 0; j < img->width; j++ ) { sample.data.fl[0] = (float)j; sample.data.fl[1] = (float)i; // estimate the response and get the neighbors’ labels response = knn.find_nearest(&sample,K,0,0,nearests,0); // compute the number of neighbors representing the majority for( k = 0, accuracy = 0; k < K; k++ ) { if( nearests->data.fl[k] == response) accuracy++; } // highlight the pixel depending on the accuracy (or confidence) cvSet2D( img, i, j, response == 1 ? (accuracy > 5 ? CV_RGB(180,0,0) : CV_RGB(180,120,0)) : (accuracy > 5 ? CV_RGB(0,180,0) : CV_RGB(120,120,0)) ); } } // display the original training samples for( i = 0; i < train_sample_count/2; i++ ) { CvPoint pt; pt.x = cvRound(trainData1.data.fl[i*2]); pt.y = cvRound(trainData1.data.fl[i*2+1]); cvCircle( img, pt, 2, CV_RGB(255,0,0), CV_FILLED ); pt.x = cvRound(trainData2.data.fl[i*2]); pt.y = cvRound(trainData2.data.fl[i*2+1]); cvCircle( img, pt, 2, CV_RGB(0,255,0), CV_FILLED ); } cvNamedWindow( "classifier result", 1 ); cvShowImage( "classifier result", img ); cvWaitKey(0); cvReleaseMat( &trainClasses ); cvReleaseMat( &trainData ); return 0; }
KNN的思想很好理解,也非常容易實現,同時分類結果較高,對異常值不敏感。但計算複雜度較高,不適於大資料的分類問題。