目標檢測訓練資料增廣--旋轉+尺度+顏色+裁剪
阿新 • • 發佈:2018-12-29
原文連結:https://blog.csdn.net/wei_guo_xd/article/details/74199729
常用的影象擴充方式有:水平翻轉,裁剪,視角變換,jpeg壓縮,尺度變換,顏色變換,旋轉當用於分類資料集時,這些變換方法可以全部被使用,然而考慮到目標檢測標註框的變換,我們選擇如下幾種方式用於目標檢測資料集擴充:jpeg壓縮,尺度變換,顏色變換這裡,我們介紹一個圖象變換包這是專案主頁,裡面介紹了用於影象變換的基本方法,以及如何組合它們可以得到最好的效果,專案主頁裡同時帶python程式。裡面的影象變換程式如下(用於windows下,用於目標檢測時,做了一些修改):
import os, sys, pdb, numpy from PIL import Image,ImageChops,ImageOps,ImageDraw #parameters used for the CVPR paper NCROPS = 10 NHOMO = 8 JPG=[70,50,30] ROTS = [3,6,9,12,15] SCALES=[1.5**0.5,1.5,1.5**1.5,1.5**2,1.5**2.5] #parameters computed on ILSVRC10 dataset lcolor = [ 381688.61379382 , 4881.28307136, 2316.10313483] pcolor = [[-0.57848371, -0.7915924, 0.19681989], [-0.5795621 , 0.22908373, -0.78206676], [-0.57398987 , 0.56648223 , 0.59129816]] #pre-generated gaussian values alphas = [[0.004894 , 0.153527, -0.012182], [-0.058978, 0.114067, -0.061488], [0.002428, -0.003576, -0.125031]] def gen_colorimetry(i): p1r = pcolor[0][0] p1g = pcolor[1][0] p1b = pcolor[2][0] p2r = pcolor[0][1] p2g = pcolor[1][1] p2b = pcolor[2][1] p3r = pcolor[0][2] p3g = pcolor[1][2] p3b = pcolor[2][2] l1 = numpy.sqrt(lcolor[0]) l2 = numpy.sqrt(lcolor[1]) l3 = numpy.sqrt(lcolor[2]) if i<=3: alpha = alphas[i] else: numpy.random.seed(i*3) alpha = numpy.random.randn(3,0,0.01) a1 = alpha[0] a2 = alpha[1] a3 = alpha[2] return (a1*l1*p1r + a2*l2*p2r + a3*l3*p3r, a1*l1*p1g + a2*l2*p2g + a3*l3*p3g, a1*l1*p1b + a2*l2*p2b + a3*l3*p3b) def gen_crop(i,w,h): numpy.random.seed(4*i) x0 = numpy.random.random()*(w/4) y0 = numpy.random.random()*(h/4) x1 = w - numpy.random.random()*(w/4) y1 = h - numpy.random.random()*(h/4) return (int(x0),int(y0),int(x1),int(y1)) def gen_homo(i,w,h): if i==0: return (0,0,int(0.125*w),h,int(0.875*w),h,w,0) elif i==1: return (0,0,int(0.25*w),h,int(0.75*w),h,w,0) elif i==2: return (0,int(0.125*h),0,int(0.875*h),w,h,w,0) elif i==3: return (0,int(0.25*h),0,int(0.75*h),w,h,w,0) elif i==4: return (int(0.125*w),0,0,h,w,h,int(0.875*w),0) elif i==5: return (int(0.25*w),0,0,h,w,h,int(0.75*w),0) elif i==6: return (0,0,0,h,w,int(0.875*h),w,int(0.125*h)) elif i==7: return (0,0,0,h,w,int(0.75*h),w,int(0.25*h)) else: assert False def rot(image,angle,fname): white = Image.new('L',image.size,"white") wr = white.rotate(angle,Image.NEAREST,expand=0) im = image.rotate(angle,Image.BILINEAR,expand=0) try: image.paste(im,wr) except ValueError: print >>sys.stderr, 'error: image do not match '+fname return image def gen_corner(n, w, h): x0 = 0 x1 = w y0 = 0 y1 = h rat = 256 - 227 if n == 0: #center x0 = (rat*w)/(2*256.0) y0 = (rat*h)/(2*256.0) x1 = w - (rat*w)/(2*256.0) y1 = h - (rat*h)/(2*256.0) elif n == 1: x0 = (rat*w)/256.0 y0 = (rat*h)/256.0 elif n == 2: x1 = w - (rat*w)/256.0 y0 = (rat*h)/256.0 elif n == 3: x1 = w - (rat*w)/256.0 y1 = h - (rat*h)/256.0 else: assert n==4 x0 = (rat*w)/256.0 y1 = h - (rat*h)/256.0 return (int(x0),int(y0),int(x1),int(y1)) #the main fonction to call #takes a image input path, a transformation and an output path and does the transformation def gen_trans(imgfile,trans,outfile): for trans in trans.split('*'): image = Image.open(imgfile) w,h = image.size if trans=="plain": image.save(outfile,"JPEG",quality=100) elif trans=="flip": ImageOps.mirror(image).save(outfile,"JPEG",quality=100) elif trans.startswith("crop"): c = int(trans[4:]) image.crop(gen_crop(c,w,h)).save(outfile,"JPEG",quality=100) elif trans.startswith("homo"): c = int(trans[4:]) image.transform((w,h),Image.QUAD, gen_homo(c,w,h), Image.BILINEAR).save(outfile,"JPEG",quality=100) elif trans.startswith("jpg"): image.save(outfile,quality=int(trans[3:])) elif trans.startswith("scale"): scale = SCALES[int(trans.replace("scale",""))] image.resize((int(w/scale),int(h/scale)),Image.BILINEAR).save(outfile,"JPEG",quality=100) elif trans.startswith('color'): (dr,dg,db) = gen_colorimetry(int(trans[5])) table = numpy.tile(numpy.arange(256),(3)) table[ :256]+= (int)(dr) table[256:512]+= (int)(dg) table[512: ]+= (int)(db) image.convert("RGB").point(table).save(outfile,"JPEG",quality=100) elif trans.startswith('rot-'): angle =int(trans[4:]) for i in range(angle): image = rot(image,-1,outfile) image.save(outfile,"JPEG",quality=100) elif trans.startswith('rot'): angle =int(trans[3:]) for i in range(angle): image = rot(image,1,outfile) image.save(outfile,"JPEG",quality=100) elif trans.startswith('corner'): i = int(trans[6:]) image.crop(gen_corner(i,w,h)).save(outfile,"JPEG",quality=100) else: assert False, "Unrecognized transformation: "+trans imgfile = outfile # in case we iterate #Our 41 transformations used in the CVPR paper def get_all_trans(): # transformations = (["plain","flip"] # # +["crop%d"%i for i in range(NCROPS)] # # +["homo%d"%i for i in range(NHOMO)] # +["jpg%d"%i for i in JPG] # +["scale0","scale1","scale2","scale3","scale4"] # +["color%d"%i for i in range(3)] # # +["rot-%d"%i for i in ROTS] # # +["rot%d"%i for i in ROTS] # )+["scale0","scale1","scale2","scale3","scale4"] transformations=(["plain"] + ["jpg%d" % i for i in JPG] + ["scale0", "scale1", "scale2", "scale3", "scale4"] + ["color%d" % i for i in range(3)]) return transformations #transformations used at test time in deep architectures def get_deep_trans(): return ['corner0','corner1','corner2','corner3','corner4','corner0*flip','corner1*flip','corner2*flip','corner3*flip','corner4*flip'] if __name__=="__main__": inputpath = sys.argv[1] name = [name for name in os.listdir(inputpath) if os.path.isfile(os.path.join(inputpath,name))] #img_input = sys.argv[1] outpath = sys.argv[2] if len(sys.argv)>= 4: trans = sys.argv[3] if not trans.startswith("["): trans = [trans] else: trans = eval(trans) else: trans = get_all_trans() print "Generating transformations and storing in %s"%(outpath) for k in name: for t in trans: img_input=inputpath+'\\'+k gen_trans(img_input,t,outpath+'\\%s_%s.jpg'%(".".join(img_input.split("\\")[-1].split(".")[:-1]),t)) #gen_trans(k, t, outpath + '\\%s_%s.jpg' % (".".join(k.split(".")[:-1]), t)) print "Finished. Transformations generated: %s"%(" ".join(trans))
修改xml檔案的程式如下;
# -*- coding=utf-8 -*- import os import sys import shutil from xml.dom.minidom import Document from xml.etree.ElementTree import ElementTree,Element import xml.dom.minidom JPG=[70,50,30] SCALES=[1.5**0.5,1.5,1.5**1.5,1.5**2,1.5**2.5] #產生變換後的xml檔案 def gen_xml(xml_input,trans,outfile): for trans in trans.split('*'): if trans=="plain" or trans.startswith("jpg") or trans.startswith('color'):#如果是這幾種變換,直接修改xml檔名就好 dom = xml.dom.minidom.parse(xml_input) root = dom.documentElement filenamelist = root.getElementsByTagName('filename') filename = filenamelist[0] c = str(filename.firstChild.data) d = ".".join(outfile.split("\\")[-1].split(".")[:-1]) + '.jpg' filename.firstChild.data = d f = open(outfile, 'w') dom.writexml(f, encoding='utf-8') elif trans.startswith("scale"):#對於尺度變換,xml檔案資訊也需要改變 scale = SCALES[int(trans.replace("scale", ""))] dom=xml.dom.minidom.parse(xml_input) root=dom.documentElement filenamelist=root.getElementsByTagName('filename') filename=filenamelist[0] c=str(filename.firstChild.data) d=".".join(outfile.split("\\")[-1].split(".")[:-1])+'.jpg' filename.firstChild.data=d heightlist = root.getElementsByTagName('height') height = heightlist[0] a = int(height.firstChild.data) b = str(int(a / scale)) height.firstChild.data = b widthlist=root.getElementsByTagName('width') width=widthlist[0] a = int(width.firstChild.data) b = str(int(a / scale)) width.firstChild.data=b objectlist=root.getElementsByTagName('xmin') for object in objectlist: a=int(object.firstChild.data) b=str(int(a/scale)) object.firstChild.data=b objectlist = root.getElementsByTagName('ymin') for object in objectlist: a = int(object.firstChild.data) b = str(int(a / scale)) object.firstChild.data = b objectlist = root.getElementsByTagName('xmax') for object in objectlist: a = int(object.firstChild.data) b = str(int(a / scale)) object.firstChild.data = b objectlist = root.getElementsByTagName('ymax') for object in objectlist: a = int(object.firstChild.data) b = str(int(a / scale)) object.firstChild.data = b f=open(outfile,'w') dom.writexml(f,encoding='utf-8') else: assert False, "Unrecognized transformation: "+trans #產生各種變換名 def get_all_trans(): transformations=(["plain"] + ["jpg%d" % i for i in JPG] + ["scale0", "scale1", "scale2", "scale3", "scale4"] + ["color%d" % i for i in range(3)]) return transformations if __name__=="__main__": inputpath = sys.argv[1] name = [name for name in os.listdir(inputpath) if os.path.isfile(os.path.join(inputpath,name))] outpath = sys.argv[2] if len(sys.argv)>= 4: trans = sys.argv[3] if not trans.startswith("["): trans = [trans] else: trans = eval(trans) else: trans = get_all_trans() print "Generating transformations and storing in %s"%(outpath) for k in name: for t in trans: xml_input=inputpath+'\\'+k gen_xml(xml_input,t,outpath+'\\%s_%s.xml'%(".".join(xml_input.split("\\")[-1].split(".")[:-1]),t))