1. 程式人生 > >一維卷積神經網路處理序列模型

一維卷積神經網路處理序列模型

from keras.datasets import imdb
from keras.models import Sequential
from keras.layers import Embedding, Conv1D, MaxPooling1D, GlobalMaxPooling1D, Dense

from keras.optimizers import RMSprop

max_features = 10000
max_len = 500

(input_train, y_train), (input_test, y_test) = imdb.load_data(num_words = max_features)
print(len(input_train), 'train sequences') print(input_train[0]) model = Sequential() model.add(Embedding(max_features, 128, input_length = max_len)) model.add(Conv1D(32, 7, activation = 'relu')) model.add(MaxPooling1D(5)) model.add(Conv1D(32, 7, activation = 'relu')) model.add(GlobalMaxPooling1D()
) model.add(Dense(1)) model.summary() model.compile(optimizer = RMSprop(lr = 1e-4), loss = 'binary_crossentropy', metrics = ['acc']) history = model.fit(x_train, y_train, epochs = 10, batch_size = 128, validation_split =
0.2)