FPgrowth用python3實現挖掘頻繁項集
阿新 • • 發佈:2019-01-01
輸入:
simpDat = [['r', 'z', 'h', 'j', 'p'],
['z', 'y', 'x', 'w', 'v', 'u', 't', 's'],
['z'],
['r', 'x', 'n', 'o', 's'],
['y', 'r', 'x', 'z', 'q', 't', 'p'],
['y', 'z', 'x', 'e', 'q', 's', 't', 'm']]
過程:
dataSet=simpDat
freqItems =fpGrowth(dataSet,4) #4代表最小頻繁度,即要找出出現4次或4次以上的頻繁項集
freqItems
dataSet是輸入,可按實際情況整理
輸出:
[{'x'}, {'z'}] #simDat中出現4次貨以上的頻繁項集
以下是程式碼,當成一個FPgrowth的黑盒子:
#FP樹中節點的類定義
class treeNode:
def __init__(self, nameValue, numOccur, parentNode):
self.name = nameValue
self.count = numOccur
self.nodeLink = None #nodeLink 變數用於連結相似的元素項
self.parent = parentNode #指向當前節點的父節點
self.children = {} #空字典,存放節點的子節點
def inc(self, numOccur):
self.count += numOccur
#將樹以文字形式顯示
def disp(self, ind=1):
print (' ' * ind, self.name, ' ', self.count)
for child in self.children.values():
child.disp(ind + 1 )
#構建FP-tree
def createTree(dataSet, minSup=1):
headerTable = {}
for trans in dataSet: #第一次遍歷:統計各個資料的頻繁度
for item in trans:
headerTable[item] = headerTable.get(item, 0) + dataSet[trans]
#用頭指標表統計各個類別的出現的次數,計算頻繁量:頭指標表[類別]=出現次數
for k in list(headerTable): #刪除未達到最小頻繁度的資料
if headerTable[k] < minSup:
del (headerTable[k])
freqItemSet = set(headerTable.keys())#儲存達到要求的資料
# print ('freqItemSet: ',freqItemSet)
if len(freqItemSet) == 0:
return None, None #若達到要求的數目為0
for k in headerTable: #遍歷頭指標表
headerTable[k] = [headerTable[k], None] #儲存計數值及指向每種型別第一個元素項的指標
# print ('headerTable: ',headerTable)
retTree = treeNode('Null Set', 1, None) #初始化tree
for tranSet, count in dataSet.items(): # 第二次遍歷:
localD = {}
for item in tranSet: # put transaction items in order
if item in freqItemSet:#只對頻繁項集進行排序
localD[item] = headerTable[item][0]
#使用排序後的頻率項集對樹進行填充
if len(localD) > 0:
orderedItems = [v[0] for v in sorted(localD.items(), key=lambda p: p[1], reverse=True)]
updateTree(orderedItems, retTree, headerTable, count) # populate tree with ordered freq itemset
return retTree, headerTable #返回樹和頭指標表
def updateTree(items, inTree, headerTable, count):
if items[0] in inTree.children: # 首先檢查是否存在該節點
inTree.children[items[0]].inc(count) # 存在則計數增加
else: # 不存在則將新建該節點
inTree.children[items[0]] = treeNode(items[0], count, inTree)#建立一個新節點
if headerTable[items[0]][1] == None: # 若原來不存在該類別,更新頭指標列表
headerTable[items[0]][1] = inTree.children[items[0]]#更新指向
else:#更新指向
updateHeader(headerTable[items[0]][1], inTree.children[items[0]])
if len(items) > 1: #仍有未分配完的樹,迭代
updateTree(items[1::], inTree.children[items[0]], headerTable, count)
#節點連結指向樹中該元素項的每一個例項。
# 從頭指標表的 nodeLink 開始,一直沿著nodeLink直到到達連結串列末尾
def updateHeader(nodeToTest, targetNode):
while (nodeToTest.nodeLink != None):
nodeToTest = nodeToTest.nodeLink
nodeToTest.nodeLink = targetNode
def loadSimpDat():
simpDat = [['r', 'z', 'h', 'j', 'p'],
['z', 'y', 'x', 'w', 'v', 'u', 't', 's'],
['z'],
['r', 'x', 'n', 'o', 's'],
['y', 'r', 'x', 'z', 'q', 't', 'p'],
['y', 'z', 'x', 'e', 'q', 's', 't', 'm']]
return simpDat
#createInitSet() 用於實現上述從列表到字典的型別轉換過程
def createInitSet(dataSet):
retDict = {}
for trans in dataSet:
retDict[frozenset(trans)] = 1
return retDict
#從FP樹中發現頻繁項集
def ascendTree(leafNode, prefixPath): #遞迴上溯整棵樹
if leafNode.parent != None:
prefixPath.append(leafNode.name)
ascendTree(leafNode.parent, prefixPath)
def findPrefixPath(basePat, treeNode): #引數:指標,節點;
condPats = {}
while treeNode != None:
prefixPath = []
ascendTree(treeNode, prefixPath)#尋找當前非空節點的字首
if len(prefixPath) > 1:
condPats[frozenset(prefixPath[1:])] = treeNode.count #將條件模式基新增到字典中
treeNode = treeNode.nodeLink
return condPats
#遞迴查詢頻繁項集
def mineTree(inTree, headerTable, minSup, preFix, freqItemList):
# 頭指標表中的元素項按照頻繁度排序,從小到大
bigL = [v[0] for v in sorted(headerTable.items(), key=lambda p: str(p[1]))]#python3修改
for basePat in bigL: #從底層開始
#加入頻繁項列表
newFreqSet = preFix.copy()
newFreqSet.add(basePat)
print ('finalFrequent Item: ',newFreqSet)
freqItemList.append(newFreqSet)
#遞迴呼叫函式來建立基
condPattBases = findPrefixPath(basePat, headerTable[basePat][1])
print ('condPattBases :',basePat, condPattBases)
#2. 構建條件模式Tree
myCondTree, myHead = createTree(condPattBases, minSup)
#將建立的條件基作為新的資料集新增到fp-tree
print ('head from conditional tree: ', myHead)
if myHead != None: #3. 遞迴
print ('conditional tree for: ',newFreqSet)
myCondTree.disp(1)
mineTree(myCondTree, myHead, minSup, newFreqSet, freqItemList)
def fpGrowth(dataSet, minSup=3):
initSet = createInitSet(dataSet)
myFPtree, myHeaderTab = createTree(initSet, minSup)
freqItems = []
mineTree(myFPtree, myHeaderTab, minSup, set([]), freqItems)
return freqItems