1. 程式人生 > >CVPR2016目標檢測新進展

CVPR2016目標檢測新進展

作者:孔巴巴

連結:https://zhuanlan.zhihu.com/p/21533724
來源:知乎

[1] He K, Zhang X, Ren S, et al. Deep residual learning for image recognition. In CVPR 2016

[2] Bell S, Zitnick C L, Bala K, et al. Inside-outside net: Detecting objects in context with skip pooling and recurrent neural networks. In CVPR 2016

[3] Kong T, Yao A, Chen Y, et al. HyperNet: Towards Accurate Region Proposal Generation and Joint Object Detection. In CVPR 2016

[4] Cheng M M, Zhang Z, Lin W Y, et al. BING: Binarized normed gradients for objectness estimation at 300fps. In CVPR 2014

[5] Redmon J, Divvala S, Girshick R, et al. You only look once: Unified, real-time object detection. In CVPR 2016

[6] Najibi M, Rastegari M, Davis L S. G-CNN: an Iterative Grid Based Object Detector. In CVPR 2016

[7] Gidaris S, Komodakis N. LocNet: Improving Localization Accuracy for Object Detection. In CVPR 2016

[8] Shrivastava A, Gupta A, Girshick R. Training region-based object detectors with online hard example mining. In CVPR 2016

[9] Girshick R. Fast R-CNN. In ICCV 2015

[10] Ren S, He K, Girshick R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks. In NIPS 2015

[11] Liu W, Anguelov D, Erhan D, et al. SSD: Single Shot MultiBox Detector[J]. arXiv preprint arXiv:1512.02325, 2015.