pytorch 搭建自己的神經網路和各種優化器例項
阿新 • • 發佈:2019-01-07
import torch import torchvision import torchvision.transforms as transform import torch.utils.data as Data import matplotlib.pyplot as plt from torch.utils.data import Dataset,DataLoader import pandas as pd import numpy as np from torch.autograd import Variable # data set train=pd.read_csv('Thirdtest.csv') #cut 0 col as label train_label=train.iloc[:,[0]] #只讀取一列 #train_label=train.iloc[:,0:3] #cut 1~16 col as data train_data=train.iloc[:,1:] #change to np train_label_np=train_label.values train_data_np=train_data.values #change to tensor train_label_ts=torch.from_numpy(train_label_np) train_data_ts=torch.from_numpy(train_data_np) train_label_ts=train_label_ts.type(torch.LongTensor) train_data_ts=train_data_ts.type(torch.FloatTensor) print(train_label_ts.shape) print(type(train_label_ts)) train_dataset=Data.TensorDataset(train_data_ts,train_label_ts) train_loader=DataLoader(dataset=train_dataset,batch_size=64,shuffle=True) #make a network import torch.nn.functional as F # 激勵函式都在這 class Net(torch.nn.Module): # 繼承 torch 的 Module def __init__(self ): super(Net, self).__init__() # 繼承 __init__ 功能 self.hidden1 = torch.nn.Linear(16, 30)# 隱藏層線性輸出 self.out = torch.nn.Linear(30, 3) # 輸出層線性輸出 def forward(self, x): # 正向傳播輸入值, 神經網路分析出輸出值 x = F.relu(self.hidden1(x)) # 激勵函式(隱藏層的線性值) x = self.out(x) # 輸出值, 但是這個不是預測值, 預測值還需要再另外計算 return x # net=Net() # optimizer = torch.optim.SGD(net.parameters(), lr=0.0001,momentum=0.001) # loss_func = torch.nn.CrossEntropyLoss() # the target label is NOT an one-hotted # loss_list=[] # for epoch in range(500): # for step ,(b_x,b_y) in enumerate (train_loader): # b_x,b_y=Variable(b_x),Variable(b_y) # b_y=b_y.squeeze(1) # output=net(b_x) # loss=loss_func(output,b_y) # optimizer.zero_grad() # loss.backward() # optimizer.step() # if epoch%1==0: # loss_list.append(float(loss)) # print( "Epoch: ", epoch, "Step ", step, "loss: ", float(loss)) # 為每個優化器建立一個 net net_SGD = Net() net_Momentum = Net() net_RMSprop = Net() net_Adam = Net() nets = [net_SGD, net_Momentum, net_RMSprop, net_Adam] #定義優化器 LR=0.0001 opt_SGD = torch.optim.SGD(net_SGD.parameters(), lr=LR,momentum=0.001) opt_Momentum = torch.optim.SGD(net_Momentum.parameters(), lr=LR, momentum=0.8) opt_RMSprop = torch.optim.RMSprop(net_RMSprop.parameters(), lr=LR, alpha=0.9) opt_Adam = torch.optim.Adam(net_Adam.parameters(), lr=LR, betas=(0.9, 0.99)) optimizers = [opt_SGD, opt_Momentum, opt_RMSprop, opt_Adam] loss_func = torch.nn.CrossEntropyLoss() losses_his = [[], [], [], []] for net, opt, l_his in zip(nets, optimizers, losses_his): for epoch in range(500): for step, (b_x, b_y) in enumerate(train_loader): b_x, b_y = Variable(b_x), Variable(b_y) b_y = b_y.squeeze(1)# 資料必須得是一維非one-hot向量 # 對每個優化器, 優化屬於他的神經網路 output = net(b_x) # get output for every net loss = loss_func(output, b_y) # compute loss for every net opt.zero_grad() # clear gradients for next train loss.backward() # backpropagation, compute gradients opt.step() # apply gradients if epoch%1==0: l_his.append(loss.data.numpy()) # loss recoder print("optimizers: ",opt,"Epoch: ",epoch,"Step ",step,"loss: ",float(loss)) labels = ['SGD', 'Momentum', 'RMSprop', 'Adam'] for i, l_his in enumerate(losses_his): plt.plot(l_his, label=labels[i]) plt.legend(loc='best') plt.xlabel('Steps') plt.ylabel('Loss') plt.xlim((0,1000)) plt.ylim((0,4)) plt.show() # # for epoch in range(5): # for step ,(b_x,b_y) in enumerate (train_loader): # b_x,b_y=Variable(b_x),Variable(b_y) # b_y=b_y.squeeze(1) # output=net(b_x) # loss=loss_func(output,b_y) # loss.backward() # optimizer.zero_grad() # optimizer.step() # print(loss)