py-faster-rcnn demo.py解析
阿新 • • 發佈:2019-01-08
#程式功能:呼叫caffemodel,畫出檢測到的人臉並顯示 #用來指定用什麼直譯器執行指令碼,以及直譯器所在位置,這樣就可以直接執行指令碼 #!/usr/bin/env python # -------------------------------------------------------- # Faster R-CNN # Copyright (c) 2015 Microsoft # Licensed under The MIT License [see LICENSE for details] # Written by Ross Girshick # -------------------------------------------------------- """ Demo script showing detections in sample images. See README.md for installation instructions before running. """ import _init_paths #匯入“_init_paths.py”檔案 from fast_rcnn.config import cfg from fast_rcnn.test import im_detect from fast_rcnn.nms_wrapper import nms from utils.timer import Timer import matplotlib.pyplot as plt #匯入用來畫圖的工具 import numpy as np #numpg:矩陣計算模組 import scipy.io as sio #scipy.io:對matlab中mat檔案進行讀取操作 import caffe, os, sys, cv2 import argparse #argparse:是python用於解析命令列引數和選項的標準模組 #CLASSES = ('__background__', #背景 + 類 # 'aeroplane', 'bicycle', 'bird', 'boat', # 'bottle', 'bus', 'car', 'cat', 'chair', # 'cow', 'diningtable', 'dog', 'horse', # 'motorbike', 'person', 'pottedplant', # 'sheep', 'sofa', 'train', 'tvmonitor') CLASSES = ('__background__','face') #只有一類:face NETS = {'vgg16': ('VGG16', #網路 'VGG16_faster_rcnn_final.caffemodel'), 'myvgg': ('VGG_CNN_M_1024', 'VGG_CNN_M_1024_faster_rcnn_final.caffemodel'), 'zf': ('ZF', 'ZF_faster_rcnn_final.caffemodel'), 'myzf': ('ZF', 'zf_rpn_stage1_iter_80000.caffemodel'), } def vis_detections(im, class_name, dets, thresh=0.5): """Draw detected bounding boxes.""" inds = np.where(dets[:, -1] >= thresh)[0] #返回置信度大於閾值的視窗下標 if len(inds) == 0: return im = im[:, :, (2, 1, 0)] fig, ax = plt.subplots(figsize=(12, 12)) ax.imshow(im, aspect='equal') for i in inds: bbox = dets[i, :4] #人臉座標位置(Xmin,Ymin,Xmax,Ymax) score = dets[i, -1] #置信度得分 ax.add_patch( plt.Rectangle((bbox[0], bbox[1]), #bbox[0]:x, bbox[1]:y, bbox[2]:x+w, bbox[3]:y+h bbox[2] - bbox[0], bbox[3] - bbox[1], fill=False, edgecolor='red', linewidth=3.5) ) ax.text(bbox[0], bbox[1] - 2, '{:s} {:.3f}'.format(class_name, score), bbox=dict(facecolor='blue', alpha=0.5), fontsize=14, color='white') ax.set_title(('{} detections with ' 'p({} | box) >= {:.1f}').format(class_name, class_name, thresh), fontsize=14) plt.axis('off') plt.tight_layout() plt.draw() def demo(net, image_name): #檢測目標類,在圖片中提議視窗 """Detect object classes in an image using pre-computed object proposals.""" # Load the demo image,得到圖片絕對地址 im_file = os.path.join(cfg.DATA_DIR, 'demo', image_name) #拼接路徑,返回'A/B/C'之類路徑 im = cv2.imread(im_file) #讀取圖片 # Detect all object classes and regress object bounds timer = Timer() #time.time()返回當前時間 timer.tic() #返回開始時間,見'time.py'中 scores, boxes = im_detect(net, im) #檢測,返回得分和人臉區域所在位置 timer.toc() #返回平均時間,'time.py'檔案中 print ('Detection took {:.3f}s for ' #輸出 '{:d} object proposals').format(timer.total_time, boxes.shape[0]) # Visualize detections for each class CONF_THRESH = 0.8 NMS_THRESH = 0.3 for cls_ind, cls in enumerate(CLASSES[1:]): #enumerate:用於遍歷序列中元素及他們的下標 cls_ind += 1 # because we skipped background ,cls_ind:下標,cls:元素 cls_boxes = boxes[:, 4*cls_ind:4*(cls_ind + 1)] #返回當前座標 cls_scores = scores[:, cls_ind] #返回當前得分 dets = np.hstack((cls_boxes, #hstack:拷貝,合併引數 cls_scores[:, np.newaxis])).astype(np.float32) keep = nms(dets, NMS_THRESH) dets = dets[keep, :] vis_detections(im, cls, dets, thresh=CONF_THRESH) #畫檢測框 def parse_args(): """Parse input arguments.""" parser = argparse.ArgumentParser(description='Faster R-CNN demo') parser.add_argument('--gpu', dest='gpu_id', help='GPU device id to use [0]', default=0, type=int) parser.add_argument('--cpu', dest='cpu_mode', help='Use CPU mode (overrides --gpu)', action='store_true') parser.add_argument('--net', dest='demo_net', help='Network to use [vgg16]', choices=NETS.keys(), default='vgg16') args = parser.parse_args() return args if __name__ == '__main__': #判斷是否在直接執行該.py檔案 cfg.TEST.HAS_RPN = True # Use RPN for proposals args = parse_args() #模式設定 prototxt = os.path.join(cfg.MODELS_DIR, NETS[args.demo_net][0], #連線路徑,設定prototxt檔案 'faster_rcnn_alt_opt', 'faster_rcnn_test.pt') caffemodel = os.path.join(cfg.DATA_DIR, 'faster_rcnn_models', NETS[args.demo_net][1]) if not os.path.isfile(caffemodel): raise IOError(('{:s} not found.\nDid you run ./data/script/' 'fetch_faster_rcnn_models.sh?').format(caffemodel)) if args.cpu_mode: caffe.set_mode_cpu() else: caffe.set_mode_gpu() caffe.set_device(args.gpu_id) cfg.GPU_ID = args.gpu_id net = caffe.Net(prototxt, caffemodel, caffe.TEST) #設定網路 print '\n\nLoaded network {:s}'.format(caffemodel) # Warmup on a dummy image im = 128 * np.ones((300, 500, 3), dtype=np.uint8) for i in xrange(2): #xrange是一個類,返回的是一個xrange物件 _, _= im_detect(net, im) #用於演示的圖片名 im_names = ['000456.jpg', '000542.jpg', '001150.jpg', '001763.jpg', '004545.jpg', '001.jpg', '002.jpg', '003.jpg', '004.jpg', '005.jpg', '006.jpg', '007.jpg', '008.jpg'] for im_name in im_names: print '~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~' print 'Demo for data/demo/{}'.format(im_name) demo(net, im_name) #逐個跑demo plt.show()