1. 程式人生 > >線性遞推式模板 hdu6198為例

線性遞推式模板 hdu6198為例

今天打2017瀋陽網路賽的時候,第五題好像是個找規律的題(因為我好像找出規律了,但是沒寫),隊友直接一個模版,把我推出的前幾項放進去後直接就可以把後面的弄出來。。。太強了

寫這篇部落格儲存一下這個強無敵的模板,可以解決任何線性遞推式.。這個板子是我一個學長從百度之星複賽上扒的杜教的板子。所以我們現在要做的是用推出遞推式的前幾項.,然後扔進這個板子就可以了。

mod換成題目的就OK,前幾項丟的越多越好, 一般8個是絕對可以推出來的,個別的少一點也行。

模板

#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm> #include <vector> #include <string> #include <map> #include <set> #include <cassert> using namespace std; #define rep(i,a,n) for (int i=a;i<n;i++) #define per(i,a,n) for (int i=n-1;i>=a;i--) #define pb push_back #define mp make_pair #define all(x) (x).begin(),(x).end()
#define fi first #define se second #define SZ(x) ((int)(x).size()) typedef vector<int> VI; typedef long long ll; typedef pair<int,int> PII; const ll mod=1000000007; ll powmod(ll a,ll b) {ll res=1;a%=mod; assert(b>=0); for(;b;b>>=1){if(b&1)res=res*a%mod;a=a*a%mod;}return res;} int _,n; namespace
linear_seq { const int N=10010; ll res[N],base[N],_c[N],_md[N]; vector<int> Md; void mul(ll *a,ll *b,int k) { rep(i,0,k+k) _c[i]=0; rep(i,0,k) if (a[i]) rep(j,0,k) _c[i+j]=(_c[i+j]+a[i]*b[j])%mod; for (int i=k+k-1;i>=k;i--) if (_c[i]) rep(j,0,SZ(Md)) _c[i-k+Md[j]]=(_c[i-k+Md[j]]-_c[i]*_md[Md[j]])%mod; rep(i,0,k) a[i]=_c[i]; } int solve(ll n,VI a,VI b) { ll ans=0,pnt=0; int k=SZ(a); assert(SZ(a)==SZ(b)); rep(i,0,k) _md[k-1-i]=-a[i];_md[k]=1; Md.clear(); rep(i,0,k) if (_md[i]!=0) Md.push_back(i); rep(i,0,k) res[i]=base[i]=0; res[0]=1; while ((1ll<<pnt)<=n) pnt++; for (int p=pnt;p>=0;p--) { mul(res,res,k); if ((n>>p)&1) { for (int i=k-1;i>=0;i--) res[i+1]=res[i];res[0]=0; rep(j,0,SZ(Md)) res[Md[j]]=(res[Md[j]]-res[k]*_md[Md[j]])%mod; } } rep(i,0,k) ans=(ans+res[i]*b[i])%mod; if (ans<0) ans+=mod; return ans; } VI BM(VI s) { VI C(1,1),B(1,1); int L=0,m=1,b=1; rep(n,0,SZ(s)) { ll d=0; rep(i,0,L+1) d=(d+(ll)C[i]*s[n-i])%mod; if (d==0) ++m; else if (2*L<=n) { VI T=C; ll c=mod-d*powmod(b,mod-2)%mod; while (SZ(C)<SZ(B)+m) C.pb(0); rep(i,0,SZ(B)) C[i+m]=(C[i+m]+c*B[i])%mod; L=n+1-L; B=T; b=d; m=1; } else { ll c=mod-d*powmod(b,mod-2)%mod; while (SZ(C)<SZ(B)+m) C.pb(0); rep(i,0,SZ(B)) C[i+m]=(C[i+m]+c*B[i])%mod; ++m; } } return C; } int gao(VI a,ll n) { VI c=BM(a); c.erase(c.begin()); rep(i,0,SZ(c)) c[i]=(mod-c[i])%mod; return solve(n,c,VI(a.begin(),a.begin()+SZ(c))); } }; int main() { for (scanf("%d",&_);_;_--) { scanf("%d",&n); printf("%d\n",linear_seq::gao(VI{2,24,96,416,1536,5504,18944,64000,212992,702464},n-1)); } }

hdu6198

#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <vector>
#include <string>
#include <map>
#include <set>
#include <cassert>
using namespace std;
#define rep(i,a,n) for (int i=a;i<n;i++)
#define per(i,a,n) for (int i=n-1;i>=a;i--)
#define pb push_back
#define mp make_pair
#define all(x) (x).begin(),(x).end()
#define fi first
#define se second
#define SZ(x) ((int)(x).size())
typedef vector<int> VI;
typedef long long ll;
typedef pair<int,int> PII;
const ll mod=998244353;
ll powmod(ll a,ll b)
{
    ll res=1;
    a%=mod;
    assert(b>=0);
    for(;b;b>>=1)
    {
        if(b&1)
            res=res*a%mod;
        a=a*a%mod;
    }
    return res;
}
int _,n;
namespace linear_seq {
    const int N=10010;
    ll res[N],base[N],_c[N],_md[N];
    vector<int> Md;
    void mul(ll *a,ll *b,int k) {
        for(int i = 0 ; i < k + k ; ++i)
        _c[i]=0;
        for(int i = 0 ; i < k ;++i)
         if (a[i])
         for(int j = 0 ;j < k ;++ j)
            _c[i+j]=(_c[i+j]+a[i]*b[j])%mod;
        for (int i=k+k-1;i>=k;i--)
            if (_c[i])
            for(int j = 0 ; j<(int ) Md.size() ; ++ j)
                _c[i-k+Md[j]]=(_c[i-k+Md[j]]-_c[i]*_md[Md[j]])%mod;
        for(int i =0 ; i< k ; ++i)
        a[i]=_c[i];
    }
    int solve(ll n,VI a,VI b) {
        ll ans=0,pnt=0;
        int k=SZ(a);
        assert( SZ(a) == SZ(b) );
        for(int i = 0 ;i < k ; ++ i)
         _md[k-1-i] = -a[i] ; _md[k] = 1 ;
        Md.clear() ;
        for(int i =0 ; i < k ; ++ i)
            if (_md[i]!=0)
                Md.push_back(i);
        for(int i = 0; i< k ;++ i)
         res[i]=base[i]=0;
        res[0]=1;
        while ((1ll<<pnt)<=n)
        pnt++;
        for (int p=pnt;p>=0;p--) {
            mul(res,res,k);
            if ((n>>p)&1) {
                for (int i=k-1;i>=0;i--) res[i+1]=res[i];res[0]=0;
                for(int j = 0 ;j < (int)Md.size() ; ++ j)
                 res[ Md[j] ]=(res[ Md[j] ]-res[k]*_md[Md[j]])%mod;
            }
        }
        rep(i,0,k) ans=(ans+res[i]*b[i])%mod;
        if (ans<0) ans+=mod;
        return ans;
    }
    VI BM(VI s) {
        VI C(1,1),B(1,1);
        int L=0,m=1,b=1;
        for(int n= 0 ;n < (int)s.size(); ++ n ) {
            ll d=0;
//            rep(i,0,L+1)
            for(int i =0 ; i < L +1 ;++ i)
            d=(d+(ll)C[i]*s[n-i])%mod;
            if (d==0) ++m;
            else if (2*L<=n) {
                VI T=C;
                ll c=mod-d*powmod(b,mod-2)%mod;
                while (SZ(C)<SZ(B)+m)
                    C.push_back(0);
//                rep(i,0,SZ(B))
                for(int i =0 ; i < (int)B.size(); ++ i)
                    C[i+m]=(C[i+m]+c*B[i])%mod;
                L=n+1-L; B=T; b=d; m=1;
            } else {
                ll c=mod-d*powmod(b,mod-2)%mod;
                while (SZ(C)<SZ(B)+m)
                    C.push_back(0);
                for(int i = 0 ;i <(int) B.size() ; ++ i)
                    C[i+m]=(C[i+m]+c*B[i])%mod;
                ++m;
            }
        }
        return C;
    }
    ll gao(VI a,ll n) {
        VI c=BM(a);
        c.erase(c.begin());
        for( int i = 0 ; i < (int)c.size( );++i )
            c[i]=(mod-c[i])%mod;
        return (ll)solve(n,c,VI(a.begin(),a.begin()+SZ(c)));
    }
};

int main() {

        long long  ___ ;VI a;
        int N,v;
        a.push_back(4);
        a.push_back(12);
        a.push_back(33);
        a.push_back(88);
        a.push_back(232);
        a.push_back(609);
        a.push_back(1596);
    for (;~scanf("%lld",&___);)
        printf("%lld\n",linear_seq::gao(a,___-1));
    return 0 ;
}