聚類演算法 例項
testSet.txt
1.658985 4.285136
-3.453687 3.424321
4.838138 -1.151539
-5.379713 -3.362104
0.972564 2.924086
-3.567919 1.531611
0.450614 -3.302219
-3.487105 -1.724432
2.668759 1.594842
-3.156485 3.191137
3.165506 -3.999838
-2.786837 -3.099354
4.208187 2.984927
-2.123337 2.943366
0.704199 -0.479481
-0.392370 -3.963704
2.831667 1.574018
-0.790153 3.343144
2.943496 -3.357075
-3.195883 -2.283926
2.336445 2.875106
-1.786345 2.554248
2.190101 -1.906020
-3.403367 -2.778288
1.778124 3.880832
-1.688346 2.230267
2.592976 -2.054368
-4.007257 -3.207066
2.257734 3.387564
-2.679011 0.785119
0.939512 -4.023563
-3.674424 -2.261084
2.046259 2.735279
-3.189470 1.780269
4.372646 -0.822248
-2.579316 -3.497576
1.889034 5.190400
-0.798747 2.185588
2.836520 -2.658556
-3.837877 -3.253815
places.txt
Dolphin II 10860 SW Beaverton-Hillsdale Hwy Beaverton, OR 45.486502 -122.788346
Hotties 10140 SW Canyon Rd. Beaverton, OR 45.493150 -122.781021
Pussycats 8666a SW Canyon Road Beaverton, OR 45.498187 -122.766147
Stars Cabaret 4570 Lombard Ave Beaverton, OR 45.485943 -122.800311
Sunset Strip 10205 SW Park Way Beaverton, OR 45.508203 -122.781853
Vegas VIP Room 10018 SW Canyon Rd Beaverton, OR 45.493398 -122.779628
Full Moon Bar and Grill 28014 Southeast Wally Road Boring, OR 45.430319 -122.376304
505 Club 505 Burnside Rd Gresham, OR 45.507621 -122.425553
Dolphin 17180 McLoughlin Blvd Milwaukie, OR 45.399070 -122.618893
Dolphin III 13305 SE McLoughlin BLVD Milwaukie, OR 45.427072 -122.634159
Acropolis 8325 McLoughlin Blvd Portland, OR 45.462173 -122.638846
Blush 5145 SE McLoughlin Blvd Portland, OR 45.485396 -122.646587
Boom Boom Room 8345 Barbur Blvd Portland, OR 45.464826 -122.699212
Bottoms Up 16900 Saint Helens Rd Portland, OR 45.646831 -122.842918
Cabaret II 17544 Stark St Portland, OR 45.519142 -122.482480
Cabaret Lounge 503 W Burnside Portland, OR 45.523094 -122.675528
Carnaval 330 SW 3rd Avenue Portland, OR 45.520682 -122.674206
Casa Diablo 2839 NW St. Helens Road Portland, OR 45.543016 -122.720828
Chantilly Lace 6723 Killingsworth St Portland, OR 45.562715 -122.593078
Club 205 9939 Stark St Portland, OR 45.519052 -122.561510
Club Rouge 403 SW Stark Portland, OR 45.520561 -122.675605
Dancin’ Bare 8440 Interstate Ave Portland, OR 45.584124 -122.682725
Devil’s Point 5305 SE Foster Rd Portland, OR 45.495365 -122.608366
Double Dribble 13550 Southeast Powell Boulevard Portland, OR 45.497750 -122.524073
Dream on Saloon 15920 Stark St Portland, OR 45.519142 -122.499672
DV8 5003 Powell Blvd Portland, OR 45.497498 -122.611177
Exotica 240 Columbia Blvd Portland, OR 45.583048 -122.668350
Frolics 8845 Sandy Blvd Portland, OR 45.555384 -122.571475
G-Spot Airport 8654 Sandy Blvd Portland, OR 45.554263 -122.574167
G-Spot Northeast 3400 NE 82nd Ave Portland, OR 45.547229 -122.578746
G-Spot Southeast 5241 SE 72nd Ave Portland, OR 45.484823 -122.589208
Glimmers 3532 Powell Blvd Portland, OR 45.496918 -122.627920
Golden Dragon Exotic Club 324 SW 3rd Ave Portland, OR 45.520714 -122.674189
Heat 12131 SE Holgate Blvd. Portland, OR 45.489637 -122.538196
Honeysuckle’s Lingerie 3520 82nd Ave Portland, OR 45.548651 -122.578730
Hush Playhouse 13560 Powell Blvd Portland, OR 45.497765 -122.523985
JD’s Bar & Grill 4523 NE 60th Ave Portland, OR 45.555811 -122.600881
Jody’s Bar And Grill 12035 Glisan St Portland, OR 45.526306 -122.538833
Landing Strip 6210 Columbia Blvd Portland, OR 45.595042 -122.728825
Lucky Devil Lounge 633 SE Powell Blvd Portland, OR 45.501585 -122.659310
#-*- coding: utf-8 -*-
'''
Created on Feb 16, 2011
k Means Clustering for Ch10 of Machine Learning in Action
@author: Peter Harrington
'''
from numpy import *
#讀資料
def loadDataSet(fileName):
dataMat = [] #建立列表,儲存讀取的資料
fr = open(fileName)
for line in fr.readlines(): #讀每一行
line1=line.strip(); #刪頭尾空白
curLine = line1.split('\t') #以\t為分割,返回一個list列表
fltLine = map(float,curLine)#str 轉成 float
dataMat.append(fltLine) #將元素新增到列表尾
return dataMat
#算距離
def distEclud(vecA, vecB): #兩個向量間歐式距離
return sqrt(sum(power(vecA - vecB, 2))) #la.norm(vecA-vecB)
#初始化聚類中心
def randCent(dataSet, k):
#特徵維度
n = shape(dataSet)[1]
#建立聚類中心的矩陣 k x n
centroids = mat(zeros((k,n)))
#遍歷n維特徵
for j in range(n):
#第j維特徵屬性值min ,1x1矩陣
minJ = min(dataSet[:,j])
#區間值max-min,float數值
rangeJ = float(max(dataSet[:,j]) - minJ)
#第j維,每次隨機生成k箇中心
centroids[:,j] = mat(minJ + rangeJ * random.rand(k,1))
return centroids
#k-means演算法 (#預設歐式距離,初始中心點方法randCent())
def kMeans(dataSet, k, distMeas=distEclud, createCent=randCent):
m = shape(dataSet)[0] #樣本總數
#分配樣本到最近的簇:存[簇序號,距離的平方]
clusterAssment = mat(zeros((m,2)))
#step1:#初始化聚類中心
centroids = createCent(dataSet, k)
clusterChanged = True
#所有樣本分配結果不再改變,迭代終止
while clusterChanged:
clusterChanged = False
#step2:分配到最近的聚類中心對應的簇中
for i in range(m):
minDist = inf; minIndex = -1 #對於每個樣本,定義最小距離
for j in range(k): #計算每個樣本與k箇中心點距離
distJI = distMeas(centroids[j,:],dataSet[i,:])
if distJI < minDist:
minDist = distJI; minIndex = j #獲取最小距離,及對應的簇序號
if clusterAssment[i,0] != minIndex: clusterChanged = True
clusterAssment[i,:] = minIndex,minDist**2 #分配樣本到最近的簇
print 'centroids=',centroids
#step3:更新聚類中心
for cent in range(k):#樣本分配結束後,重新計算聚類中心
#獲取該簇所有的樣本點
ptsInClust = dataSet[nonzero(clusterAssment[:,0].A==cent)[0]]
#更新聚類中心:axis=0沿列方向求均值
centroids[cent,:] = mean(ptsInClust, axis=0)
return centroids, clusterAssment
#二分kmeans
def biKmeans(dataSet, k, distMeas=distEclud):
m = shape(dataSet)[0]
clusterAssment = mat(zeros((m,2)))
#所有樣本看成一個簇,求均值
centroid0 = mean(dataSet, axis=0).tolist()[0]#axis=0按列,matrix->list
centList =[centroid0] #create a list with one centroid
for j in range(m): #計算初始總誤差SSE
clusterAssment[j,1] = distMeas(mat(centroid0), dataSet[j,:])**2
#當簇數<k時
while (len(centList) < k):
lowestSSE = inf #初始化SSE
for i in range(len(centList)): #對每個簇
#獲取當前簇cluster=i內的資料
ptsInCurrCluster = dataSet[nonzero(clusterAssment[:,0].A==i)[0],:]
#對cluster=i的簇進行kmeans劃分,k=2
centroidMat, splitClustAss = kMeans(ptsInCurrCluster, 2, distMeas)
#cluster=i的簇被劃分為兩個子簇後的SSE
sseSplit = sum(splitClustAss[:,1])
#除了cluster=i的簇,其他簇的SSE
sseNotSplit = sum(clusterAssment[nonzero(clusterAssment[:,0].A!=i)[0],1])
print "sseSplit, and notSplit: ",sseSplit,sseNotSplit
#找最佳的劃分簇,使得劃分後 總SSE=sseSplit + sseNotSplit最小
if (sseSplit + sseNotSplit) < lowestSSE:
bestCentToSplit = i
bestNewCents = centroidMat #被劃分簇的兩個新中心
bestClustAss = splitClustAss.copy() #被劃分簇的聚類結果0,1 ,及簇內SSE
lowestSSE = sseSplit + sseNotSplit
#將最佳被劃分簇的聚類結果為1的類別,更換類別為len(centList)
bestClustAss[nonzero(bestClustAss[:,0].A == 1)[0],0] = len(centList)
#將最佳被劃分簇的聚類結果為0的類別,更換類別為bestCentToSplit
bestClustAss[nonzero(bestClustAss[:,0].A == 0)[0],0] = bestCentToSplit
print 'the bestCentToSplit is: ',bestCentToSplit
print 'the len of bestClustAss is: ', len(bestClustAss)
#將被劃分簇的一箇中心,替換為劃分後的兩個中心
centList[bestCentToSplit] = bestNewCents[0,:].tolist()[0]
centList.append(bestNewCents[1,:].tolist()[0])
#更新整體的聚類效果clusterAssment(類別,SSE)
clusterAssment[nonzero(clusterAssment[:,0].A == bestCentToSplit)[0],:]= bestClustAss
#kMeans.datashow(dataSet,len(centList),mat(centlist),clusterAssment)
return mat(centList), clusterAssment
#2維資料聚類效果顯示
def datashow(dataSet,k,centroids,clusterAssment): #二維空間顯示聚類結果
from matplotlib import pyplot as plt
num,dim=shape(dataSet) #樣本數num ,維數dim
if dim!=2:
print 'sorry,the dimension of your dataset is not 2!'
return 1
marksamples=['or','ob','og','ok','^r','sb','<g'] #樣本圖形標記
if k>len(marksamples):
print 'sorry,your k is too large,please add length of the marksample!'
return 1
#繪所有樣本
for i in range(num):
markindex=int(clusterAssment[i,0])#矩陣形式轉為int值, 簇序號
#特徵維對應座標軸x,y;樣本圖形標記及大小
plt.plot(dataSet[i,0],dataSet[i,1],marksamples[markindex],markersize=6)
#繪中心點
markcentroids=['dr','db','dg','dk','^b','sk','<r']#聚類中心圖形標記
for i in range(k):
plt.plot(centroids[i,0],centroids[i,1],markcentroids[i],markersize=15)
plt.title('k-means cluster result') #標題
plt.show()
#2維原始資料顯示
def datashow0(dataSet): #二維空間顯示聚類結果
from matplotlib import pyplot as plt
num,dim=shape(dataSet) #樣本數num ,維數dim
if dim!=2:
print 'sorry,the dimension of your dataset is not 2!'
return 1
marksamples=['or','ob','og','ok','^r','sb','<g'] #樣本圖形標記
if k>len(marksamples):
print 'sorry,your k is too large,please add length of the marksample!'
return 1
#繪所有樣本
for i in range(num):
markindex=int(clusterAssment[i,0])#矩陣形式轉為int值, 簇序號
#特徵維對應座標軸x,y;樣本圖形標記及大小
plt.plot(dataSet[i,0],dataSet[i,1],marksamples[markindex],markersize=6)
#繪中心點
markcentroids=['dr','db','dg','dk','^b','sk','<r']#聚類中心圖形標記
for i in range(k):
plt.plot(centroids[i,0],centroids[i,1],markcentroids[i],markersize=15)
plt.title('dataset') #標題
plt.show()
import urllib
import json
def geoGrab(stAddress, city):
apiStem = 'http://where.yahooapis.com/geocode?' #create a dict and constants for the goecoder
params = {}
params['flags'] = 'J'#JSON return type
params['appid'] = 'aaa0VN6k'
params['location'] = '%s %s' % (stAddress, city)
url_params = urllib.urlencode(params)
yahooApi = apiStem + url_params #print url_params
print yahooApi
c=urllib.urlopen(yahooApi)
return json.loads(c.read())
from time import sleep
def massPlaceFind(fileName):
fw = open('places.txt', 'w')
for line in open(fileName).readlines():
line = line.strip()
lineArr = line.split('\t')
retDict = geoGrab(lineArr[1], lineArr[2])
if retDict['ResultSet']['Error'] == 0:
lat = float(retDict['ResultSet']['Results'][0]['latitude'])
lng = float(retDict['ResultSet']['Results'][0]['longitude'])
print "%s\t%f\t%f" % (lineArr[0], lat, lng)
fw.write('%s\t%f\t%f\n' % (line, lat, lng))
else: print "error fetching"
sleep(1)
fw.close()
def distSLC(vecA, vecB):#Spherical Law of Cosines
a = sin(vecA[0,1]*pi/180) * sin(vecB[0,1]*pi/180)
b = cos(vecA[0,1]*pi/180) * cos(vecB[0,1]*pi/180) * \
cos(pi * (vecB[0,0]-vecA[0,0]) /180)
return arccos(a + b)*6371.0 #pi is imported with numpy
import matplotlib
import matplotlib.pyplot as plt
def clusterClubs(numClust=5):
datList = []
for line in open('places.txt').readlines():
lineArr = line.split('\t')
datList.append([float(lineArr[4]), float(lineArr[3])])
datMat = mat(datList)
myCentroids, clustAssing = biKmeans(datMat, numClust, distMeas=distSLC)
fig = plt.figure()
rect=[0.1,0.1,0.8,0.8]
scatterMarkers=['s', 'o', '^', '8', 'p', \
'd', 'v', 'h', '>', '<']
axprops = dict(xticks=[], yticks=[])
ax0=fig.add_axes(rect, label='ax0', **axprops)
imgP = plt.imread('Portland.png')
ax0.imshow(imgP)
ax1=fig.add_axes(rect, label='ax1', frameon=False)
for i in range(numClust):
ptsInCurrCluster = datMat[nonzero(clustAssing[:,0].A==i)[0],:]
markerStyle = scatterMarkers[i % len(scatterMarkers)]
ax1.scatter(ptsInCurrCluster[:,0].flatten().A[0], ptsInCurrCluster[:,1].flatten().A[0], marker=markerStyle, s=90)
ax1.scatter(myCentroids[:,0].flatten().A[0], myCentroids[:,1].flatten().A[0], marker='+', s=300)
plt.show()
if __name__=='__main__':
# #=====顯示原始資料
# # #獲取樣本資料
# datamat=mat(loadDataSet('testSet.txt'))
# #樣本的個數和特徵維數
# num,dim=shape(datamat)
# marksamples=['ok'] #樣本圖形標記
# for i in range(num):
# plt.plot(datamat[i,0],datamat[i,1],marksamples[0],markersize=6)
# plt.title('dataset') #標題
# plt.show()
### #=====kmeans聚類
## k=4 #使用者定義聚類數
## # 獲取樣本資料
## datamat=mat(loadDataSet('testSet.txt'))
## run_num=8 #迴圈多次看多次的聚類效果
## for i in range(run_num): #可迴圈多次看效果圖
## mycentroids,clusterAssment=kMeans(datamat,k)
## # 繪圖顯示
## datashow(datamat,k,mycentroids,clusterAssment)
###二分kmeans
datamat2=mat(loadDataSet('testSet.txt'))
k= 4
for i in range(1): #可以迴圈多次看效果圖
centlist,mynewassments=biKmeans(datamat2,k)
datashow(datamat2,k,centlist,mynewassments)
#-*- coding: utf-8 -*-
from numpy import*
from matplotlib import pyplot as plt
import kMeans
#####################################################
##每次劃分都顯示一下
#二分kmeans
#def biKmeans(dataSet, k, distMeas=distEclud):
dataSet=mat(kMeans.loadDataSet('testSet.txt'))
k=4
distMeas=kMeans.distEclud
m = shape(dataSet)[0]
clusterAssment = mat(zeros((m,2)))
#所有樣本看成一個簇,求均值
centroid0 = mean(dataSet, axis=0).tolist()[0]#axis=0按列,matrix->list
centList =[centroid0] #create a list with one centroid
for j in range(m): #計算初始總誤差SSE
clusterAssment[j,1] = distMeas(mat(centroid0), dataSet[j,:])**2
kMeans.datashow(dataSet,len(centList),mat(centList),clusterAssment)
#當簇數<k時
while (len(centList) < k):
lowestSSE = inf #初始化SSE
#對每個簇
for i in range(len(centList)):
#獲取當前簇cluster=i內的資料
ptsInCurrCluster = dataSet[nonzero(clusterAssment[:,0].A==i)[0],:]
#對cluster=i的簇進行kmeans劃分,k=2
centroidMat, splitClustAss = kMeans.kMeans(ptsInCurrCluster, 2, distMeas)
#cluster=i的簇被劃分為兩個子簇後的SSE
sseSplit = sum(splitClustAss[:,1])
#除了cluster=i的簇,其他簇的SSE
sseNotSplit = sum(clusterAssment[nonzero(clusterAssment[:,0].A!=i)[0],1])
print "sseSplit, and notSplit: ",sseSplit,sseNotSplit
#找最佳的劃分簇,使得劃分後 總SSE=sseSplit + sseNotSplit最小
if (sseSplit + sseNotSplit) < lowestSSE:
bestCentToSplit = i
bestNewCents = centroidMat #被劃分簇的兩個新中心
bestClustAss = splitClustAss.copy() #被劃分簇的聚類結果0,1 ,及簇內SSE
lowestSSE = sseSplit + sseNotSplit
#將最佳被劃分簇的聚類結果為1的類別,更換類別為len(centList)
bestClustAss[nonzero(bestClustAss[:,0].A == 1)[0],0] = len(centList)
#將最佳被劃分簇的聚類結果為0的類別,更換類別為bestCentToSplit
bestClustAss[nonzero(bestClustAss[:,0].A == 0)[0],0] = bestCentToSplit
print 'the bestCentToSplit is: ',bestCentToSplit
print 'the len of bestClustAss is: ', len(bestClustAss)
#將被劃分簇的一箇中心,替換為劃分後的兩個中心
centList[bestCentToSplit] = bestNewCents[0,:].tolist()[0]
centList.append(bestNewCents[1,:].tolist()[0])
#更新整體的聚類效果clusterAssment(類別,SSE)
clusterAssment[nonzero(clusterAssment[:,0].A == bestCentToSplit)[0],:]= bestClustAss
kMeans.datashow(dataSet,len(centList),mat(centList),clusterAssment)
#return mat(centList), clusterAssment