1. 程式人生 > >c++位運算子 | & ^ ~ && ||,補碼,反碼

c++位運算子 | & ^ ~ && ||,補碼,反碼

一:簡介

1 位邏輯運算子:

       &  (位   “與”)  and
       ^   (位   “異或”)
       |    (位    “或”)   or
       ~   (位   “取反”)
2 移位運算子:
      
<< (左移)

      >>(右移)

優先順序

位“與”、位“或”和位“異或”運算子都是雙目運算子,其結合性都是從左向右的,優先順序高於邏輯運算子,低於比較運算子,且從高到低依次為&、^、| 

二:位邏輯運算

& 運算   ----------------------- -2個都為1-》1
0&1 =0;   
0&0 =0;
1&0 =0;

1&1 =1;


00111

&            =00100

11100

&運算通常用於二進位制取位操作,例如一個數 &1的結果就是取二進位制的最末位。

這可以用來判斷一個整數的奇偶,二進位制的最末位為0表示該數是偶數,最末位為1表示該數為奇數


-----------------------------------------------------------------

| 運算---------------------------1個為1--》1


0|0=0;   
0|1=1;
1|0=1;

1|1=1;

00111

|           =11111

11100

| 運算通常用於二進位制特定位上的無條件賦值,例如一個數|1的結果就是把二進位制最末位強行變為1

如果需要把二進位制最末位變成0,對這個數 |1之後再減一就可以了,其實際意義就是把這個數強行變成最近接的偶數

--------------------------------------------------------------------

^ 運算---------------------------不同則為1,相同則為0 // 當且僅當兩個運算值中有一個為1但不同時為1時,返回值為1


0^1=1;

1^0=1;

1^1=0;

0^0=0;

00111

 ^           =11011

11100

^運算通常用於對二進位制的特定一位進行取反操作,^運算的逆運算是它本身,也就是說兩次異或同一個數最後結果不變,即(a^b)^b=a;

^運算可以用於簡單的加密,比如原始值int a = 19880516;金鑰 int key =1314520; 進行加密 int data=key^a = 20665500;解密 data^key == a;

^運算還可以實現兩個值的交換而不需要中間變數,例如:

先看加減法中交換實現

void swap(long int &a,long int &b)

{

     a = a+b;

     b = a-b;

     a = a-b;

}

void swap(long int &a,long int &b)

{

    a = a^b;

    b = a^b;

    a = a^b;

}

所以 ^運算可以理解成類似加法(+)記憶 , 1+1 =0,1+0 =1,0+1 =1;0+0 =0;//因為機器碼是二進位制,1+1=2%2 =0,其實不然

---------------------------------------------------------------------------------------------------

~運算

~運算的定義把記憶體中的0和1全部取反,所以~運算時要格外小心,你需要注意整數型別有沒符號,如果~的物件是無符號整數(不能表示負數),那麼他的值就是它與它的上界限的之差,因為無符號型別的數是用$0000到$FFFF依次表示的。

下面的兩個程式(僅語言不同)均返回65435。

var

     a:word;

begin

      a:=100;

      a:=not  a;

     writenln(a);

end.


#include <iostream>

using namespace std;


int main()

{

       unsingned short a = 100;

        a = ~a;

        printf("%d\n",a);

        return 0;

}

如果 ~的物件是有符號的整數,情況就不一樣了,詳見最後面整數型別的儲存

三:位移運算

<<運算

a<<b 表示把a轉為二進位制後左移b位(在後面新增 b個0)。例如100的二進位制表示為1100100,100左移2位後(後面加2個零):1100100<<2 =110010000 =400,可以看出,a<<b的值實際上就是a乘以2的b次方,因為在二進位制數後面新增一個0就相當該數乘以2,2個零即2的2次方 等於4。通常認為a<<1比a*2更快,因為前者是更底層一些的操作。因此程式中乘以2的操作儘量用左移一位來代替。

定義一些常量可能會用到<<運算。你可以方便的用1<<16 -1 來表示65535(unsingned int  最大值16位系統)。很多演算法和資料結構要求資料模組必須是2的冪,此時就可以用<<來定義MAX_N等常量。

>>運算

和<<相似,a>>b表示二進位制右移b位(去掉末b位),相當於a除以2的b次方(取整)。我們經常用>>1來代替 /2(div 2),比如二分查詢、堆的插入操作等等。想辦法用>>代替除法運算可以使程式的效率大大提高。最大公約數的二進位制演算法用除以2操作來代替慢的出奇的%(mod)運算,效率可以提高60%

int a =100;

a/4 ==a>>2;

位移運算運用 例子

1.合併資料

縮短資料:int a =4; int b=2;  可以將資料 a,b 保存於一個變數 int c中,在此int 型別為32位

a=0x0000 0004; / /十六進位制

b=0x0000 0002;

int c = a<<16;//左移操作-將a資料向左移動16位=0x0004 0000

 c |=b;  // (|)操作,一個為1 則為1,所以高16位不變,低16位值為 b值,即c = 0x0004 0002;完成資料的合併

2.解析資料

上面c = 0x0004 0002;

讀取高位:int a1 = c>>16; / / 右移16位,消除低位資料,讀取高位資料 a1 = 0x0000 0004

讀取低位:int a2 = c&0xFFFF; //(&)操作,2個都為1 則為1,所以0xFFFF 即 0X0000 FFFF, 所以高位全為0,低位的 1不變,0還是0,a2=0x0000 0002,讀取低位成功

讀取低位2:int a2 = c<<16; 消除高位,低位存入高位,a2=0x0002 0000;

                                 a2 = a2>>16;高位存入低位,消除低位; a2 = 0x0000 0002;

下面列舉一些常見的二進位制位的變換操作

去掉最後一位 101101->10110 x>>1
在最後加一個0 101101->1011010 x<<1
在最後加一個1 101101->1011011 (x<<1)+1
把最後一位變成1 101100->101101 x | 1
把最後一位變成0 101101->101100 (x |1) - 1
最後一位取反 101101->101100 x ^ 1
把右數第K位變成1 101001->101101,k=3 x  | (1<<(k-1))
把右數第K位變成0 101101->101101,k=3 x & ~(1<<(k-1))
右數第k位取反 101001->101101,k=3 x ^ (1<<(k-1))
取末三位 1101101->101 x &7
取末k位 1101101->1101,k=5 x & (1<<k-1)
取右數第k位 1101101->1,k=4 x >> (k-1)&1
把末k位變成1 101001->101111,k=4 x|(1<<k-1)
末k位取反 101001->100110,k=4 x^(1<<k-1)
把右邊連續的1變成0 100101111->100100000 x&(x+1)
把右起第一個0變成1 100101111->100111111 x|(x+1)
把右邊連續的0變成1 11011000->11011111 x|(x-1)
取右邊連續的1 100101111->1111 (x^(x+1))>>1
去掉右起第一個1的左邊 100101000->1000 x&(x^(x-1))
     

最後一個會在樹狀陣列中用到

整數型別的儲存

前面 所說的位運算都沒有涉及負數,都假設這些運算是在unsingned/word型別(只能表示正數的整型)上進行操作。

但計算機如何處理有正負符號的整型呢?這個設計到補碼,反碼知識點,請看下面

       假設有一 int 型別的數,值為5,那麼,我們知道它在計算機中表示為:00000000 00000000 00000000 00000101
5轉換成二進位制是101,不過int型別的數佔用4位元組(32位),所以前面填了一堆0。
       現在想知道,-5在計算機中如何表示?
      在計算機中,負數以其正值的補碼形式表達

      什麼叫補碼呢?這得從原碼,反碼說起。

四:反碼,補碼

       反碼和補碼的目的就是為了解決負數的問題        在計算機內,定點數有3種表示法:原碼、反碼和補碼

       所謂原碼就是前面所介紹的二進位制定點表示法,即最高位為符號位,“0”表示正,“1”表示負,其餘位表示數值的大小。


反碼錶示法規定:正數的反碼與其原碼相同;負數的反碼是對其原碼逐位取反,但符號位除外。

補碼錶示法規定:正數的補碼與其原碼相同;負數的補碼是在其反碼的末位加1。

      有原碼就可以了,為什麼還需要反碼和補碼?

       

      反碼是用來算補碼的,原碼和補碼都是用在CPU的基本運算裡的,比如資料型別是short:   
      計算5   -   2,並由於實際上CPU沒有實現減法電路(注:計算機的硬體結構中只有加法器,所以大部分的運算都必須最終轉換為加法,原碼沒有辦法做減法,而在我們使用的彙編、C等其他高階語言中使用的都是原碼,原碼轉換成補碼都是在計算機的最底層進行的)。原碼計算是   5+(-2)

     0101

  +1010

  -------  

      1111 


  =-7?顯然出錯
 所以不管正數還是負數,都使用補碼來表示(正數原碼和補碼是一樣的),  2的補碼是1110,然後用5補   +   2補   
      0101   
  +  1110   
  ------   
      0011   

  =3,正確

補碼的運算方法詳見此連結
所以理論上(也僅僅是理論上)我們只要讓減數通過一個求反電路,再通過一個+1電路,然後通過加法電路就可以實現減法了。  

所以補碼的設計目的是: 
⑴使符號位能與有效值部分一起參加運算,從而簡化運算規則. 
⑵使減法運算轉換為加法運算,進一步簡化計算機中運算器的線路設計


        原碼:在數值前直接加一符號位的表示法。

              例如: 符號位 數值位                          [+7]原= 0 0000111 B                          [-7]原= 1 0000111 B

        注意:a: 數0的原碼有兩種形式:
                           [+0]原=00000000B 

                           [-0]原=10000000B

             b: 8位二進位制原碼的表示範圍:-127~+127


  反碼:正數:正數的反碼與原碼相同。

              負數:負數的反碼,符號位為“1”,數值部分按位取反。

                   例如: 符號位 數值位

                          [+7]反= 0 0000111 B                           [-7]反= 1 1111000 B     注意:a:數0的反碼也有兩種形式,即                    [+0]反=00000000B                    [- 0]反=11111111B             b.:8位二進位制反碼的表示範圍:-127~+127


       補碼:

         1)模的概念:把一個計量單位稱之為模或模數。例如,時鐘是以12進位制進行計數迴圈的,即以12為模。在時鐘上,時針加上(正撥)12的整數位或減去(反撥)12的整數位,時針的位置不變。14點鐘在捨去模12後,成為(下午)2點鐘(14=14-12=2)。從0點出發逆時針撥10格即減去10小時,也可看成從0點出發順時針撥2格(加 上2時),即2點(0-10=-10=-10+12=2)。因此,在模12的前提下,-10可對映為+2。由此可見,對於一個模數為12的迴圈系統來說,加2和減10的效果是一樣的; 因此,在以12為模的系統中,凡是減10的運算都可以用加2來代替,這就把減法問題轉化成加法問題了(注:計算機的硬體結構中只有加法器,所以大部分的運算都必 須最終轉換為加法)。10和2對模12而言互為補數。

 

          同理,計算機的運算部件與暫存器都有一定字長的限制(假設字長為8),因此它的運算也是一種模運算。當計數器計滿8位也就是256個數後會產生溢位,又從頭開始                 計數。產生溢位的量就是計數器的模,顯然,8位二進位制數,它的模數為8=256。在計算中,兩個互補的數稱為“補碼”。

     2)補碼的表示:

         正數:正數的補碼和原碼相同。          負數:負數的補碼則是符號位為“1”。並且,這個“1”既是符號位,也是數值位。數值部分按位取反後再在末位(最低位)加1。也就是“反碼+1”。    例如: 符號位 數值位                [+7]補= 0 0000111 B

               [-7]補= 1 1111001 B


   補碼在微型機中是一種重要的編碼形式,請注意:

  a: 採用補碼後,可以方便地將減法運算轉化成加法運算,運算過程得到簡化。正數的補碼即是它所表示的數的真值,而負數的補碼的數值部份卻不是它所表示的數的真                    值。採用補碼進行運算,所得結果仍為補碼。


  b.:與原碼、反碼不同,數值0的補碼只有一個,即 [0]補=00000000B。


  c.:若字長為8位,則補碼所表示的範圍為-128~+127;進行補碼運算時,應注意所得結果不應超過補碼所能表示數的範圍。


原始碼、反碼和補碼之間的轉化

        由於正數的原始碼、反碼、補碼錶示方法相同,不需轉換。

         在此,僅以負數情況分析。

          1)已知原碼,求補碼

                 例:已知某數X的原始碼為10110100B,試求X的補碼和反碼。

                 解:由【X】原=10110100B看出,X為負數。求其反碼時,符號位不變,數值部分按位求反;求其補碼時,再在其反碼的末位加1。

                  10110100 原碼

                   11001011反碼,符號位不變,數值取反

                  1+1

                  11001100 補碼

                 故:【X】補 = 11001100B,【X】反 = 11001011B。

           2)已知補碼,求原碼。

                 分析:按照求負數補碼的你過程,數值部分應是最低位減1,然後取反。但是對二進位制數來說,先減1後取反和先取反後加1得到的結果是一樣的,故仍可採用取反加1                    的方法。

                 例:已知某數X的補碼1110110B,試求其原碼。

                解:由【X】補 = 11101110B知,X為負數。

                 採用逆推法

                 11101110 補碼

                 11101101反碼(符號位不變,數值取反加1)

                 10010010原碼(符號位不變,數值取反)

                   演算法2:

                  設原始碼 =  A;可見A為負數

                  設反碼 = B;

                  因為補碼 = 反碼+1;所以

                   B +1 = 11101110;

                   B = 11101110 - 1 

                       = 11101101;

                   A =B取反(符號位不變) = 10010010;


有符號數運算時的溢位問題,看下下面兩個題目

兩個數相加怎麼變成了負數???

1) (+72)+(+98)=?

  0 1 0 0 1 0 0 0 B +72

  +

        0 1 1 0 0 0 1 0 B +98

  1 0 1 0 1 0 1 0 B -86   兩負數相加怎麼會得出正數???  2) (-83)+(-80)=?   1 0 1 0 1 1 0 1 B -83

  +

        1 0 1 1 0 0 0 0 B -80

  0 1 0 1 1 1 0 1 B +93   思考:這兩個題目,按照正常的法則來運算,但結果顯然不正確,這是怎麼回事呢?


 

  答案:這是因為發生了溢位。


 

  如果計算機的字長為n位,n位二進位制數的最高位為符號位,其餘n-1位為數值位,採用補碼錶示法時,可表示的數X的範圍是 -2的 n-1 次冪≤X≤2的 n-1 次冪-1   當n=8時,可表示的有符號數的範圍為-128~+127。兩個有符號數進行加法運算時,如果運算結果超出可表示的有符號數的範圍時,就會發生溢位,使計算結果出錯。很顯然,溢位只能出現在兩個同符號數相加或兩個異符號數相減的情況下。   對於加法運算,如果次高位(數值部分最高位)形成進位加入最高位,而最高位(符號位)相加(包括次高位的進位)卻沒有進位輸出時,或者反過來,次高位沒有進位加入最高位,但最高位卻有進位輸出時,都將發生溢位。因為這兩種情況是:兩個正數相加,結果超出了範圍,形式上變成了負數;兩負數相加,結果超出了範圍,形式上變成了正數。   而對於減法運算,當次高位不需從最高位借位,但最高位卻需借位(正數減負數,差超出範圍),或者反過來,次高位需從最高位借位,但最高位不需借位(負數減正數,差超出範圍),也會出現溢位。   在計算機中,資料是以補碼的形式儲存的,所以補碼在 c語言 的教學中有比較重要的地位,而講解補碼必須涉及到原碼、反碼。本部分演示作何一個整數的原碼、反碼、補碼。過程與結果顯示在列表框中,結果比較少,不必自動清除,而過程是相同的,沒有必要清除。故需設清除各部分及清除全部的按鈕。測試時注意最大、最小正負數。使用者使用時注意講解不會溢位:當有一個數的反碼的全部位是1才會溢位,那麼它的原碼是10000...,它不是負數,故不會溢位。   在n位的機器數中,最高位為符號位,該位為零表示為正,為一表示為負;其餘n-1位為數值位,各位的值可為零或一。當真值為正時,原碼、反碼、補碼數值位完全相同;當真值為負時,原碼的數值位保持原樣,反碼的數值位是原碼數值位的各位取反,補碼則是反碼的最低位加一。注意符號位不變。

總結

  提示資訊不要太少,可“某某數的反碼是某某”,而不是隻顯示數值。

  1.原碼的求法:

        (1)對於正數,轉化為二進位制數,在最前面新增一符號位(這是規定的),用1表示負數,0表示正數.如:0000 0000是一個位元組,其中0為符號位,表示是正數,其它七位表示二進位制的值.其實,機器不管這些,什麼符號位還是值,機器統統看作是值來計算. 正數的原碼、反碼、補碼是同一個數!

  (2)對於負數,轉化為二進位制數,前面符號位為1.表示是負數.   計算原碼只要在轉化的二進位制數前面加上相應的符號位就行了.   2.反碼的求法:對於負數,將原碼各位取反,符號位不變.   3.補碼的求法:對於負數,將反碼加上二進位制的1即可,也就是反碼在最後一位上加上1就是補碼了.