EDU 50 E. Covered Points 利用克萊姆法則計算線段交點
阿新 • • 發佈:2019-01-22
tac pri string end lse ces while 線段 計算
E. Covered Points
利用克萊姆法則計算線段交點。n^2枚舉,最後把個數開方,從ans中減去。
ans加上每個線段的定點數, 定點數用gcs(△x , △y)+1計算。
#include <algorithm> #include <iterator> #include <iostream> #include <cstring> #include <cstdlib> #include <iomanip> #include <bitset> #include<cctype> #include <cstdio> #include <string> #include <vector> #include <stack> #include <cmath> #include <queue> #include <list> #include <map> #include <set> #include <cassert> usingnamespace std; #define lson (l , mid , rt << 1) #define rson (mid + 1 , r , rt << 1 | 1) #define debug(x) cerr << #x << " = " << x << "\n"; #define pb push_back #define pq priority_queue typedef long long ll; typedef unsigned long long ull; //typedef __int128 bll;typedef pair<ll ,ll > pll; typedef pair<int ,int > pii; typedef pair<int,pii> p3; //priority_queue<int> q;//這是一個大根堆q //priority_queue<int,vector<int>,greater<int> >q;//這是一個小根堆q #define fi first #define se second //#define endl ‘\n‘ //#define R register #define OKC ios::sync_with_stdio(false);cin.tie(0) #define FT(A,B,C) for(int A=B;A <= C;++A) //用來壓行 #define REP(i , j , k) for(int i = j ; i < k ; ++i) #define max3(a,b,c) max(max(a,b), c); #define min3(a,b,c) min(min(a,b), c); //priority_queue<int ,vector<int>, greater<int> >que; const ll mos = 0x7FFFFFFF; //2147483647 const ll nmos = 0x80000000; //-2147483648 const int inf = 0x3f3f3f3f; const ll inff = 0x3f3f3f3f3f3f3f3f; //18 const int mod = 1e9+7; const double esp = 1e-8; const double PI=acos(-1.0); const double PHI=0.61803399; //黃金分割點 const double tPHI=0.38196601; template<typename T> inline T read(T&x){ x=0;int f=0;char ch=getchar(); while (ch<‘0‘||ch>‘9‘) f|=(ch==‘-‘),ch=getchar(); while (ch>=‘0‘&&ch<=‘9‘) x=x*10+ch-‘0‘,ch=getchar(); return x=f?-x:x; } /*-----------------------showtime----------------------*/ const int maxn = 1009; struct node{ ll x1,y1,x2,y2; }a[maxn]; ll ans = 0; map<pii, int> mp; void cal(int i,int j){ ll x1 = a[i].x1,y1 = a[i].y1,x2 = a[i].x2,y2 = a[i].y2; ll x3 = a[j].x1,y3 = a[j].y1,x4 = a[j].x2,y4 = a[j].y2; ll a = (y1-y2) * (x4-x3) - (x2-x1)*(y3-y4); ll t = (x2*y1 - x1*y2)*(x4-x3) - (x2-x1)*(x4*y3 - x3*y4); ll p = (y1-y2) * (x4*y3-x3*y4) - (x2*y1-x1*y2)*(y3-y4); if(a == 0)return; if(t % a || p % a) return; t = t/a; p = p/a; if(x1 > x2) swap (x1,x2); if(t < x1 || t > x2) return; if(x3 > x4) swap (x3,x4); if(t < x3 || t > x4) return; if(y1 > y2) swap(y1,y2); if(p < y1 || p > y2) return; if(y3 > y4) swap(y3,y4); if(p < y3 || p > y4) return; mp[pii(t,p)] ++; } int main(){ int n; scanf("%d", &n); for(int i=1; i<=n; i++){ ll x1,y1,x2,y2; scanf("%lld%lld%lld%lld", &x1, &y1, &x2, & y2); a[i] = (node){x1,y1,x2,y2}; ll d1 = abs(x1 - x2); ll d2 = abs(y1 - y2); ans += __gcd(d1, d2) + 1; } for(int i=1; i<=n; i++){ for(int j=1; j<=n; j++){ if(i == j) continue; cal(i,j); } } for(auto p : mp){ ans -= (int)sqrt(p.se); } printf("%lld\n", ans); return 0; }
EDU 50 E. Covered Points 利用克萊姆法則計算線段交點