線段樹 掃描線總結 學習筆記
阿新 • • 發佈:2019-01-23
看了若干神牛的文章 對線段樹的掃描線總算入門了
求面積
就是離散化座標 從下往上離散橫座標 水平掃描離散縱座標 從下往上為例 下邊定義值為1 上邊定義值為-1
在掃的過程中就能通過更新操作得到底邊長 用高度差相乘就是面積
其實還是比較好實現的 板子程式碼
using namespace std; #define lson l , m , rt << 1 #define rson m+1 , r , rt << 1 | 1 const int maxn = 2222; int cnt[maxn << 2]; double sum[maxn << 2]; double X[maxn]; struct Seg { double h , l , r; int s; Seg(){} Seg(double a,double b,double c,int d) : l(a) , r(b) , h(c) , s(d) {} bool operator < (const Seg &cmp) const { return h < cmp.h; } }ss[maxn]; void PushUp(int rt,int l,int r) { if (cnt[rt]) sum[rt] = X[r+1] - X[l]; else if (l == r) sum[rt] = 0; else sum[rt] = sum[rt<<1] + sum[rt<<1|1]; } void update(int L,int R,int c,int l,int r,int rt) { if (L <= l && r <= R) { cnt[rt] += c; PushUp(rt , l , r); return ; } int m = (l + r) >> 1; if (L <= m) update(L , R , c , lson);//注意不是小於等於 if (m < R) update(L , R , c , rson); PushUp(rt , l , r); } int Bin(double key,int n,double X[]) { int l = 0 , r = n - 1; while (l <= r) { int m = (l + r) >> 1; if (X[m] == key) return m; if (X[m] < key) l = m + 1; else r = m - 1; } return -1; } int main() { int m = 0; while (n --) { double a , b , c , d; scanf("%lf%lf%lf%lf",&a,&b,&c,&d); X[m] = a; ss[m++] = Seg(a , c , b , 1); X[m] = c; ss[m++] = Seg(a , c , d , -1); } sort(X , X + m); sort(ss , ss + m); int k = 1; for (int i = 1 ; i < m ; i ++) { if (X[i] != X[i-1]) X[k++] = X[i]; } memset(cnt , 0 , sizeof(cnt)); memset(sum , 0 , sizeof(sum)); double ret = 0; for (int i = 0 ; i < m - 1 ; i ++) { int l = Bin(ss[i].l , k , X); int r = Bin(ss[i].r , k , X)-1; if (l <= r) update(l , r , ss[i].s , 0 , k - 1, 1); ret += sum[1] * (ss[i+1].h - ss[i].h); } printf(" %.2lf\n\n",ret); return 0; }
求周長
周長我們可以這樣想 那段如果從0->0那麼他經歷了一次出來 一次收回 那麼就是*2 有幾個這個過程 就*幾個2
或者用胡浩的思路:
與面積不同的地方是還要記錄豎的邊有幾個(numseg記錄),並且當邊界重合的時候需要合併(用lbd和rbd表示邊界來輔助)
這是他的周長題 學習學習
#include <cstdio> #include <cstring> #include <cctype> #include <algorithm> using namespace std; #define lson l , m , rt << 1 #define rson m + 1 , r , rt << 1 | 1 const int maxn = 22222; struct Seg{ int l , r , h , s; Seg() {} Seg(int a,int b,int c,int d):l(a) , r(b) , h(c) , s(d) {} bool operator < (const Seg &cmp) const { return h < cmp.h; } }ss[maxn]; bool lbd[maxn<<2] , rbd[maxn<<2]; int numseg[maxn<<2]; int cnt[maxn<<2]; int len[maxn<<2]; void PushUP(int rt,int l,int r) { if (cnt[rt]) { lbd[rt] = rbd[rt] = 1; len[rt] = r - l + 1; numseg[rt] = 2; } else if (l == r) { len[rt] = numseg[rt] = lbd[rt] = rbd[rt] = 0; } else { lbd[rt] = lbd[rt<<1]; rbd[rt] = rbd[rt<<1|1]; len[rt] = len[rt<<1] + len[rt<<1|1]; numseg[rt] = numseg[rt<<1] + numseg[rt<<1|1]; if (lbd[rt<<1|1] && rbd[rt<<1]) numseg[rt] -= 2;//兩條線重合 } } void update(int L,int R,int c,int l,int r,int rt) { if (L <= l && r <= R) { cnt[rt] += c; PushUP(rt , l , r); return ; } int m = (l + r) >> 1; if (L <= m) update(L , R , c , lson); if (m < R) update(L , R , c , rson); PushUP(rt , l , r); } int main() { int n; while (~scanf("%d",&n)) { int m = 0; int lbd = 10000, rbd = -10000; for (int i = 0 ; i < n ; i ++) { int a , b , c , d; scanf("%d%d%d%d",&a,&b,&c,&d); lbd = min(lbd , a); rbd = max(rbd , c); ss[m++] = Seg(a , c , b , 1); ss[m++] = Seg(a , c , d , -1); } sort(ss , ss + m); int ret = 0 , last = 0; for (int i = 0 ; i < m ; i ++) { if (ss[i].l < ss[i].r) update(ss[i].l , ss[i].r - 1 , ss[i].s , lbd , rbd - 1 , 1); ret += numseg[1] * (ss[i+1].h - ss[i].h); ret += abs(len[1] - last); last = len[1]; } printf("%d\n",ret); } return 0; }