tf.assign函式的用法
相關推薦
tf.assign函式的用法
import tensorflow as tf import numpy as np A = tf.Variable(tf.ones([2,2]), dtype=tf.float32) with tf.Session() as sess: sess.ru
tf.assign的用法
tf.assign的用法 原創 2017年05月16日 08:26:16 13943 tf.assign(A, new_number): 這個函式的功能主要是把A的值變為new_number 例如:
tf.slice()函式用法
import tensorflow as tf t = tf.constant([[1, 1, 1, 0], [2, 2, 0, 0], [3, 0, 0, 0], [4, 0, 0,
【Python】tf.assign的用法
tf.assign(A, new_number): 這個函式的功能主要是把A的值變為new_number 例如: import tensorflow as tf; A = tf.Variable(tf.constant(0.0), dtype=tf.fl
tf.assign()函式簡單解釋
例項程式碼 import tensorflow as tf import os os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' state = tf.Variabl
TensorFlow基礎用法——tf.control_dependencies()函式用法
Ingredient: tf.control_dependencies()函式是用來控制計算流圖的,也就是給圖中的某些計算指定順序。有的時候我們想要指定某些操作執行的依賴關係,比如想要讓引數先更新,
tensorflow 中tf.expand_dims函式用法
tf.expand_dims()(維度擴充套件)函式用法 tf.expand_dims(input,position,name) 其中input就是要擴充套件的變數,position就是選擇在那個位置上擴充套件維度,如果input原來是3維的,那麼p
《TensorFlow學習筆記》tf.concat函式用法
tf版本:1.5.0 concat官方定義 Args: values: A list of Tensor objects or a single Tensor. 單個張量或是一個關於張量的
object.assign函式用法
Object.assign() 方法用於將所有可列舉的屬性的值從一個或多個源物件複製到目標物件。它將返回目標物件。 語法EDIT Object.assign(target, ...sources) 引數 target目標物件。sources(多個)源物件。 返回值
tf.transpose函式的用法講解(多維情況,看似複雜,其實也簡單)
版權宣告:本文為博主原創文章,歡迎轉載,請標明出處。 https://blog.csdn.net/cc1949/article/details/78422704 tf.transpose函式中文意思是轉置,對於低維度的轉置問題,很簡單,不想討論,直接轉置就好(大家看下面文件,一看就懂)。 &
對tensorflow中張量tensor的理解與tf.argmax()函式的用法
對tensorflow中張量tensor的理解: 一維張量: 如a=[1., 2., 3., 0., 9., ],其shape為(5,),故當我們選擇維度0時(張量的維度總是從第0個維度開始),實際上是在a的最外層括號上進行操作。 我們畫圖來表示: 二維張量: 如b=[
tf.cond()函式的用法
這個函式跟if...else...的功能很像,主要控制tensorflow中計算圖的張量的流向。官網中有對函式引數的解釋如下: tf.cond( pred, true_fn=None, fals
TensorFlow的tf.random_uniform()函式的用法
tf.random_uniform((6, 6), minval=low,maxval=high,dtype=tf.float32))) 返回6*6的矩陣,產生於low和high之間,產生的值是均勻分佈的。 import tensorflow as tf
tf.argmax(array, 1)函式用法
除了知道返回是座標,還須記得: tf.argmax(array, 1) 指的是 axis=1 tf.argmax(array)預設axis=0 import numpy as np import tensorflow as tf c = np.array([
tf.valuable_scope()函式/類用法
官網的解釋和例子實在是wast time,不用去看它了。 import tensorflow as tf a1 = tf.get_variable(name='a1', shape=[1], initializer=tf.constant_initializer(1)) with
tf.add_n函式的用法
tf.add_n([p1, p2, p3…])函式是實現一個列表的元素的相加。就是輸入的物件是一個列表,列表裡的元素可以是向量,矩陣,等 例如: import tensorflow as tf; import numpy as np; input1 = tf
tf.random_uniform函式和tf.zeros函式具體用法
tf.random_uniform用法: random_uniform( shape, 一維整數張量或 Python 陣列。輸出張量的形狀。 minval=0, dtype 型別的 0-D 張量或 Python 值;生成的隨機值範圍的下限;預設為0 m
tf.transpose函式的用法
tf.transpose函式的用法 2017年06月16日 19:13:29 UESTC_C2_403 閱讀數:24768更多 個人分類: tensorflow用法 tf.transpose(input, [dimension_1, dimenaion_2,..,dimension_n
Tensorflow函式用法之tf.argmax
tf.argmax(vector, 1):返回的是vector中的最大值的索引號,如果vector是一個向量,那就返回一個值,如果是一個矩陣,那就返回一個向量,這個向量的每一個維度都是相對應矩陣行的最大值元素的索引號。 import tensorflow as tf imp
R 語言assign 和get 函式用法
assign函式在迴圈時候,給變數賦值,算是比較方便 1、給變數賦值 for (i in 1:(length(rowSeq)-1)){ assign(paste("nginx_server_fi