最短路徑(Floyd演算法)
阿新 • • 發佈:2019-01-27
Floyd演算法又稱為弗洛伊德演算法,插點法,是一種用於尋找給定的加權圖中頂點間最短路徑的演算法。
標頭檔案:Floyd.h
#ifndef FLOYD_H #define FLOYD_H #define INFINITY 65535 #define MAXVEX 20 #define MAXVEX 20 typedef int ShortPathTable[MAXVEX][MAXVEX]; typedef int ShortPosition[MAXVEX][MAXVEX]; typedef struct graph{ int Vertex[MAXVEX]; //頂點資訊 int Edge[MAXVEX][MAXVEX]; //邊表資訊 int NumVertex,NumEdge; //圖的頂點數,邊數 }Graph; void CreateGraph(Graph *G); //建立圖 void ShortestPath_Floyd(Graph *G,ShortPosition *p,ShortPathTable *d); //費洛伊德演算法 #endif //FLOYD_H
實現檔案:Floyd.cpp
#include "Floyd.h" #include <stdio.h> void CreateGraph(Graph *G) { G->NumVertex = 9; //圖的頂點數為9 G->NumEdge = 16; //圖的邊為16 for(int i = 0;i < G->NumVertex;++i) //初始化頂點資訊 G->Vertex[i] = i; for(int i = 0;i < G->NumVertex;++i) //初始化邊表資訊 for(int j = 0;j < G->NumVertex;++j) { if(i == j) G->Edge[i][j] = 0; else G->Edge[i][j] = INFINITY; } //設定圖的邊表資訊 G->Edge[0][1] = 1; G->Edge[0][2] = 5; G->Edge[1][2] = 3; G->Edge[1][3] = 7; G->Edge[1][4] = 5; G->Edge[2][4] = 1; G->Edge[2][5] = 7; G->Edge[3][4] = 2; G->Edge[3][6] = 3; G->Edge[4][5] = 3; G->Edge[4][6] = 6; G->Edge[4][7] = 9; G->Edge[5][7] = 5; G->Edge[6][7] = 2; G->Edge[6][8] = 7; G->Edge[7][8] = 4; for(int i = 0;i < G->NumVertex;++i) //無向圖,存在反向連結 for(int j = i;j < G->NumVertex;++j) { G->Edge[j][i] = G->Edge[i][j]; } } void ShortestPath_Floyd(Graph *G,ShortPosition *p,ShortPathTable *d) { for(int i = 0;i < G->NumVertex;++i) //初始化兩個矩陣 for(int j = 0;j < G->NumVertex;++j) { (*p)[i][j] = j; //p[i][j]為 j頂點的下標值 (*d)[i][j] = G->Edge[i][j]; //d[i][j]的值為兩頂點間的權值 } for(int k = 0;k < G->NumVertex;++k) //K為中轉頂點 { for(int i = 0;i < G->NumVertex;++i) { for(int j = 0;j < G->NumVertex;++j) { if((*d)[i][j] > (*d)[i][k] + (*d)[k][j]) //如果兩頂點的距離大於經過中轉頂點的距離 { (*d)[i][j] = (*d)[i][k] + (*d)[k][j]; (*p)[i][j] = (*p)[i][k]; } } } } }
測試檔案:main.cpp
#include "Floyd.h" #include <stdio.h> int main() { Graph G; int k; ShortPathTable d; ShortPosition p; CreateGraph(&G); ShortestPath_Floyd(&G,&p,&d); for(int i = 0;i < G.NumVertex;++i) { for(int j = i + 1;j < G.NumVertex;++j) { printf("V%d - V%d weight: %d",i,j,d[i][j]); k = p[i][j]; printf(" path: V%d",i); while(k != j) { printf(" -> V%d",k); k = p[k][j]; } printf(" -> V%d\n",j); } } printf("\n"); }