1. 程式人生 > >Three-level Laser(cf Round#472 C)

Three-level Laser(cf Round#472 C)

C. Three-level Lasertime limit per test1 secondmemory limit per test256 megabytes

An atom of element X can exist in n distinct states with energies E1 < E2 < ... < En. Arkady wants to build a laser on this element, using a three-level scheme. Here is a simplified description of the scheme.

Three distinct states i, j and k are selected, where i < j < k. After that the following process happens:

  1. initially the atom is in the state i,
  2. we spend Ek - Ei energy to put the atom in the state k,
  3. the atom emits a photon with useful energy Ek - Ej and changes its state to the state j,
  4. the atom spontaneously changes its state to the state i, losing energy Ej - Ei,
  5. the process repeats from step 1.

Let's define the energy conversion efficiency as

, i. e. the ration between the useful energy of the photon and spent energy.

Due to some limitations, Arkady can only choose such three states that Ek - Ei ≤ U.

Help Arkady to find such the maximum possible energy conversion efficiency within the above constraints.

Input

The first line contains two integers n

and U (3 ≤ n ≤ 105, 1 ≤ U ≤ 109) — the number of states and the maximum possible difference between Ek and Ei.

The second line contains a sequence of integers E1, E2, ..., En (1 ≤ E1 < E2... < En ≤ 109). It is guaranteed that all Ei are given in increasing order.

Output

If it is not possible to choose three states that satisfy all constraints, print -1.

Otherwise, print one real number η — the maximum possible energy conversion efficiency. Your answer is considered correct its absolute or relative error does not exceed 10 - 9.

Formally, let your answer be a, and the jury's answer be b. Your answer is considered correct if .

ExamplesInputCopy
4 4
1 3 5 7
Output
0.5
InputCopy
10 8
10 13 15 16 17 19 20 22 24 25
Output
0.875
InputCopy
3 1
2 5 10
Output
-1
Note

In the first example choose states 1, 2 and 3, so that the energy conversion efficiency becomes equal to .

In the second example choose states 4, 5 and 9, so that the energy conversion efficiency becomes equal to .

題目連結:傳送門

題意

給定n個嚴格遞增的數(E[1],E[2],...,E[n]),從中任意找三個數,設下標分別為i,j,k,要求E[i]、E[j]、E[k]相互之間的差值都小於U,且i<j<k,問(E[k]-E[j])/(E[k]-E[i])的最大值是多少,若不存在這樣的i,j,k,則輸出-1。

思路

設 res = (E[k]-E[j])/(E[k]-E[i]) = 1 - (E[j]-E[i])/(E[k]-E[i]);

可以看出E[k]越大,res越大 ; E[j]越小,res越大。因此,要在可選範圍內,讓E[k]的值儘可能大,E[j]儘可能小。

因為 E[k]<E[i]+U 且 E[j]>E[i],所以,可以列舉 i 從1 -> n,找到E[ ]中小於E[i]+U的最大值,即為E[k],E[j]則為E[i+1]。找到遍歷 i 的過程中res的最大值即可。

當然,若在[ E[i] , E[i]+U ]的範圍內沒有3個數,則對於該 i ,res不存在。

優化:用二分查詢E[ ]中小於E[i]+U的最大值,總複雜度為O( nlogn ) ;

坑點:題目對答案的精度有要求,要在1e-9之內,而double只能到1e-6,所以要自己模擬一下除法運算,高精度輸出。

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <queue>
#include <vector>
#include <algorithm>
using namespace std;

const int MAX = 1e5 + 100;

int n;
long long U;
long long e[MAX];

//二分查詢E[ ]中小於E[i]+U的最大值的下標
long long bin_search(long long x)
{
	int l = 0;
	int r = n;
	while (r - l >= 1)
	{
		int i = (l + r) >> 1;
		if (e[i] == x)
			return i;
		else if (e[i]<x)
			l = i + 1;
		else
			r = i;
	}
	if (e[l] > x)
	{
		for (int i = l; i >= 0; i--)
		{
			if (e[i] <= x)
				return i;
		}
	}
	else if (e[l] == x)
		return l;
	else
	{
		for (int i = l; i < n; i++)
		{
			if (e[i] > x)
				return i - 1;
		}
	}
}

//模擬除法運算
void div(long long a,long long b,long long *num)
{
    for(int i=0;i<20;i++)
    {
        num[i]=a/b;
        a=a%b;
        a*=10;
    }
}

int main()
{
	scanf("%d%lld", &n, &U);
	for (int i = 0; i < n; i++)
		scanf("%lld", &e[i]);
	long  long ans[100];
	memset(ans,0,sizeof(ans));
	for (int i = 0; i < n; i++)
	{
		int num;
		if (e[i] + U >= e[n - 1])
			num = n - 1;
		else
			num = bin_search(e[i] + U);
		if (num - i + 1 >= 3)
		{
			//ans = max(ans, (long double)(e[num] - e[i + 1]) / (e[num] - e[i]));
            long long tmp[100];
			div(e[num] - e[i + 1],e[num] - e[i],tmp);
			for(int j=0;j<20;j++)
			{
                if(tmp[j]>ans[j])
                {
                    for(int k=0;k<20;k++)
                        ans[k]=tmp[k];
                    break;
                }
                else if(tmp[j]==ans[j])
                    continue;
                else
                    break;
			}
		}
	}
    //若ans的值為0,則輸出-1
    int flag=0;
    for(int i=0;i<20;i++)
    {
        if(ans[i]!=0)
        {
            flag=1;
            break;
        }
    }
    if(flag==0)
    {
        printf("-1\n");
    }
	else
    {
        printf("%lld.",ans[0]);
        for(int i=1;i<20;i++)
            printf("%lld",ans[i]);
        printf("\n");
    }
	return 0;
}