1. 程式人生 > >最短路徑(弗洛伊德演算法)

最短路徑(弗洛伊德演算法)

1.定義概述

Floyd-Warshall演算法(Floyd-Warshall algorithm)是解決任意兩點間的最短路徑的一種演算法,可以正確處理有向圖或負權的最短路徑問題,同時也被用於計算有向圖的傳遞閉包。

2.例項演示

floyd

/**
 * 弗洛伊德演算法求最短路徑
 * @author sunbufu
 *
 */
public class ShortestPathFloyd {
    /**無窮大*/
    final static int INF = Integer.MAX_VALUE;

    public static void main(String[] args) {
        int
[] points = { 1, 2, 3, 4, 5, 6 }; int[][] weights = { // 1 2 3 4 5 6 {0, 7, 9, INF, INF, 14 },//1 {7, 0, 10, 15, INF, INF },//2 {9, 10, 0, 11, INF, 2 },//3 {INF, 15, 11, 0, 6, INF },//4
{INF, INF, INF, 6, 0, 9 },//5 {14, INF, 2, INF, 9, 0 } //6 }; int[][] previousPoint = { // 1 2 3 4 5 6 {1, 2, 3, 4, 5, 6 },//1 {1, 2, 3, 4, 5, 6 },//2 {1
, 2, 3, 4, 5, 6 },//3 {1, 2, 3, 4, 5, 6 },//4 {1, 2, 3, 4, 5, 6 },//5 {1, 2, 3, 4, 5, 6 } //6 }; floyd(points, weights, previousPoint); } private static void floyd(int[] points, int[][] weights, int[][] previousPoint) { int pointsNumber = points.length; for(int k = 0; k < pointsNumber; k ++){ for(int i = 0; i < pointsNumber; i ++){ for(int j = 0; j < pointsNumber; j ++){ if(weights[i][k] != INF && weights[k][j] != INF && (weights[i][k] + weights[k][j]) < weights[i][j]){ weights[i][j] = weights[i][k] + weights[k][j]; previousPoint[i][j] = k; } } } } System.out.println(weights); } }

3.總結

簡潔的解決了最短路徑問題,但是時間複雜度為O(n^3)