pytorch(七):CNN卷積神經網路
阿新 • • 發佈:2019-02-06
import torch import torch.nn as nn import torch.utils.data as Data import torchvision # 視覺圖片資料庫 from torch.autograd import Variable import matplotlib.pyplot as plt # 超引數 EPOCH = 1 # 為節省時間,只訓練把資料訓練一趟 BATCH_SIZE = 50 # 每批訓練50個數據 LR = 0.001 DOWNLOAD_MNIST = True # 如果之前已經下載好mnist資料集,把True改為False # 下載並轉化MNIST數字資料集 train_data = torchvision.datasets.MNIST( root='./mnist/', # 把下載好的內容放在當前目錄下的mnist資料夾裡 train=True, # 這些資料是用來訓練的 transform=torchvision.transforms.ToTensor(), # 把圖片轉化成tensor形式 download=DOWNLOAD_MNIST, # DOWNLOAD_MNIST是超引數之一 ) # 打印出其中一張圖片 print('train_data.size:', train_data.train_data.size()) # train_data前者為變數名,後者指的是前者的一個屬性 print('train_labels.size:', train_data.train_labels.size()) # train_labels:標籤 # plot.imshow(), im(img)顯示圖片, cmap='gray',圖片為灰色 plt.imshow(train_data.train_data[2], cmap='gray') plt.title('%i' % train_data.train_labels[2]) # 標籤的索引序號要與train_data索引序號一致 plt.show() # 把資料集放進資料裝載機裡 train_loader = Data.DataLoader(dataset=train_data, batch_size=BATCH_SIZE, shuffle=True) # 獲取測試集dataset test_data = torchvision.datasets.MNIST(root='./mnist/', train=False) # 取前2000個測試集樣本 test_x = Variable(torch.unsqueeze(test_data.test_data, dim=1), volatile=True).type(torch.FloatTensor)[:2000]/255 # (2000, 28, 28) to (2000, 1, 28, 28), in range(0,1) test_y = test_data.test_labels[:2000] # 定義卷積神經網路 class CNN(nn.Module): def __init__(self): super(CNN, self).__init__() self.conv1 = nn.Sequential( # input shape (1, 28, 28) nn.Conv2d( in_channels=1, # input height, 因為是黑白圖片,所以height=1 out_channels=16, # n_filters, 16個過濾器,輸出採集到的16種不同特徵資訊,output shape (16, 28, 28) kernel_size=5, # filter size, 過濾器長寬尺寸均為5 stride=1, # filter movement/step, 過濾器每次移動的距離為1 # padding, 在圖片邊緣填充一層為0的層,公式:padding=(kernal_size-stride)/2 padding=2, ), # output shape(16, 28, 28) nn.ReLU(), # 激勵函式 nn.MaxPool2d(kernel_size=2), # 池化, 向下取樣.choose max value in 2x2 area, output shape (16, 14, 14) ) self.conv2 = nn.Sequential( # input shape (16, 14, 14) nn.Conv2d(16, 32, 5, 1, 2), # 16->32, output shape (32, 14, 14) nn.ReLU(), nn.MaxPool2d(2), # output shape (32, 7, 7) ) self.out = nn.Linear(32 * 7 * 7, 10) # fully connected layer, output 10 classes def forward(self, x): x = self.conv1(x) x = self.conv2(x) x = x.view(x.size(0), -1) # flatten the output of conv2 to (batch_size, 32 * 7 * 7) output = self.out(x) return output # return x for visualization # 列印CNN cnn = CNN() print(cnn) # 訓練神經網路 optimizer = torch.optim.Adam(cnn.parameters(), lr=LR) loss_func = nn.CrossEntropyLoss() for epoch in range(EPOCH): for step, (x, y) in enumerate(train_loader): b_x = Variable(x) b_y = Variable(y) output = cnn(b_x) loss = loss_func(output, b_y) optimizer.zero_grad() loss.backward() optimizer.step() if step % 100 == 0: test_output = cnn(test_x) pred_y = torch.max(test_output, 1)[1].data.squeeze() accuracy = sum(pred_y == test_y) / test_y.size(0) print('Epoch:', epoch, '|Step:', step, '|train loss:%.4f'%loss.data[0], '|test accuracy:%.4f'%accuracy) # 用10個數字測試 test_output = cnn(test_x[:10]) pred_y = torch.max(test_output, 1)[1].data.numpy().squeeze() print(pred_y, 'prediction number') print(test_y[:10].numpy(), 'real number')
執行結果:
1.MNIST資料集中的一幅圖片:
2. 神經網路訓練結果: