深度學習筆記-CNN(Convelutional Neural Network; 卷積神經網路)
什麼是卷積神經網路?
我的理解就是將影象與filter進行乘積得到一個特徵map,多個特徵map進行疊加。卷積神經網路的過程?
卷積->池化->卷積->池化->扁平.
卷積?
CNN - Convolution 將矩陣進行內積得到一個4x4的內積矩陣,將影象縮小。
池化?
選擇矩形中最大的結果池化結果為[3 0; 3 1]
扁平?
將結果放在一起。CNN比DNN更簡單。
相關推薦
深度學習筆記-CNN(Convelutional Neural Network; 卷積神經網路)
什麼是卷積神經網路? 我的理解就是將影象與filter進行乘積得到一個特徵map,多個特徵map進行疊加。 卷積神經網路的過程? 卷積->池化->卷積->池化->扁平. 卷積
深度學習方法(五):卷積神經網路CNN經典模型整理Lenet,Alexnet,Googlenet,VGG,Deep Residual Learning
歡迎轉載,轉載請註明:本文出自Bin的專欄blog.csdn.net/xbinworld。 技術交流QQ群:433250724,歡迎對演算法、技術感興趣的同學加入。 關於卷積神經網路CNN,網路和文獻中有非常多的資料,我在工作/研究中也用了好一段時間各種常見的model了,就想著
深度學習:Keras入門(二)之卷積神經網路(CNN)
說明:這篇文章需要有一些相關的基礎知識,否則看起來可能比較吃力。 1.卷積與神經元 1.1 什麼是卷積? 簡單來說,卷積(或內積)就是一種先把對應位置相乘然後再把結果相加的運算。(具體含義或者數學公式可以查閱相關資料)
吳恩達Coursera深度學習課程 deeplearning.ai (4-1) 卷積神經網路--課程筆記
本課主要講解了卷積神經網路的基礎知識,包括卷積層基礎(卷積核、Padding、Stride),卷積神經網路的基礎:卷積層、池化層、全連線層。 主要知識點 卷積核: 過濾器,各元素相乘再相加 nxn * fxf -> (n-f+1)x(n-f+1)
學習筆記之——基於pytorch的卷積神經網路
本博文為本人的學習筆記。參考材料為《深度學習入門之——PyTorch》 pytorch中文網:https://www.pytorchtutorial.com/ 關於反捲積:https://github.com/vdumoulin/conv_arithmetic/blob/ma
吳恩達Coursera深度學習課程 deeplearning.ai (4-1) 卷積神經網路--程式設計作業
Part 1:卷積神經網路 本週課程將利用numpy實現卷積層(CONV) 和 池化層(POOL), 包含前向傳播和可選的反向傳播。 變數說明 上標[l][l] 表示神經網路的第幾層 上標(i)(i) 表示第幾個樣本 上標[i][i] 表示第幾個mi
TensorFlow學習筆記(5)--實現卷積神經網路(MNIST資料集)
這裡使用TensorFlow實現一個簡單的卷積神經網路,使用的是MNIST資料集。網路結構為:資料輸入層–卷積層1–池化層1–卷積層2–池化層2–全連線層1–全連線層2(輸出層),這是一個簡單但非常有代表性的卷積神經網路。 import tensorflow
學習筆記TF057:TensorFlow MNIST,卷積神經網路、迴圈神經網路、無監督學習
構建模型。 定義輸入資料,預處理資料。讀取資料MNIST,得到訓練集圖片、標記矩陣,測試集圖片標記矩陣。trX、trY、teX、teY 資料矩陣表現。trX、teX形狀變為[-1,28,28,1],-1 不考慮輸入圖片數量,28x28 圖片長、寬畫素數,1
深度學習進階(五)--卷積神經網路與深度置信網路以及自動編碼初識(補昨天部落格更新)
總結一下昨天的學習過程 (注:這幾天老不在狀態,貌似進入了學習激情的瓶頸期,動力以及平靜心嚴重失控,Python3.X與Python2.X之間的程式碼除錯,尤其是環境配置搞得頭昏腦脹) 昨天瞭解接觸的內容 CNN卷積神經網路的基本原理以及在CPU中測試以及程式碼除錯(又是失
TensorFlow學習筆記(7)--實現卷積神經網路(同(5),不同的程式風格)
import tensorflow as tf import numpy as np import input_data mnist = input_data.read_data_sets('data/', one_hot=True) print("MNIST
Deep Learning(深度學習)學習筆記整理系列之(七)Convolutional Neural Networks卷積神經網路
轉處:http://blog.csdn.net/zouxy09/article/details/8781543/ Deep Learning(深度學習)學習筆記整理系列 作者:Zouxy version 1.0 2013-04-08 宣告: 1)該Deep
深度學習之cnn中第一層卷積層特徵的顯示
一、前言 本篇文章主要介紹了CNN網路中卷積層的計算過程,欲詳細瞭解CNN的其它資訊可以參考:技術向:一文讀懂卷積神經網路。 卷積神經網路(CNN)是區域性連線網路。相對於全連線網路其最大的特點就是:區域性連線性和權值共享性。因為對一副影象中的某個畫素p來說,一般離畫
深度學習:CNN RNN DNN 區別 卷積層或是LSTM單元
梯度消失: http://www.cnblogs.com/tsiangleo/p/6151560.html 根本的問題其實並非是消失的梯度問題或者激增的梯度問題,而是在前面的層上的梯度是來自後面的層上項的乘積。所以神經網路非常不穩定。唯一可能的情況是以上的連續乘積剛好平衡
深度學習框架tensorflow學習與應用10(MNSIT卷積神經網路實現)
import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets('F:/PY/MNIST_data/',
吳恩達深度學習筆記3-Course1-Week3【淺層神經網路】
淺層神經網路: 一、淺層神經網路的表示 本文中的淺層神經網路指的是 two layer nn 即 one input layer + one hidden layer + one output layer。通常計算神經網路的層數不包括 input l
deep learning tutorial 翻譯(theano學習指南4(翻譯)- 卷積神經網路 )
from theano.tensor.nnet import conv rng = numpy.random.RandomState(23455) # instantiate 4D tensor for input input = T.tensor4(name='input') # initializ
深度學習FPGA實現基礎知識10(Deep Learning(深度學習)卷積神經網路(Convolutional Neural Network,CNN))
第一點,在學習Deep learning和CNN之前,總以為它們是很了不得的知識,總以為它們能解決很多問題,學習了之後,才知道它們不過與其他機器學習演算法如svm等相似,仍然可以把它當做一個分類器,仍然可以像使用一個黑盒子那樣使用它。 第二點,Deep Learning強大的地方就是可以利用網路中間某一
吳恩達深度學習筆記(deeplearning.ai)之卷積神經網路(CNN)(上)
1. Padding 在卷積操作中,過濾器(又稱核)的大小通常為奇數,如3x3,5x5。這樣的好處有兩點: 在特徵圖(二維卷積)中就會存在一箇中心畫素點。有一箇中心畫素點會十分方便,便於指出過濾器的位置。 在沒有padding的情況下,經過卷積操作,輸出的資
深度學習(DL)與卷積神經網路(CNN)學習筆記隨筆-01-CNN基礎知識點
神經認知機。 卷積神經網路是受生物靈感的多層感知機的變體。從Hubel和Wiesel的早期對貓的視覺皮層的研究工作中得出,視覺皮層包含一組複雜的細胞排列。這些細胞會對很小的子區域敏感,稱作
深度學習筆記-卷積神經網路CNN與迴圈神經網路RNN有什麼區別?
CNN與RNN本質的不同就是所基於的假設不同,由於核心假設的不同,導致實現方式的差異。 CNN 首先理解什麼叫做卷積,或者說為什麼要翻譯為卷積神經網路。 卷積的定義:https://baike.baidu.com/item/%E5%8D%B7%E7%A7%AF/94110