1. 程式人生 > >NYOJ 15 括號匹配(二)

NYOJ 15 括號匹配(二)

這個是很早之前寫的,今天又從新敲了一遍!

    dp[i][j]表示:從第i個位置到第j個位置至少要新增的括號數目,我們令dp[i][i]表示當前到當前位置至少新增一個括號,假如只有一個括號,那麼dp[i][i] = 1;

dp[i][j]:

     如果從第i個位置到第j個位置中間有某個位置k(k >= i && k < j)與第j個位置的括號相匹配,那麼

     dp[i][j] = min(dp[i][j], dp[i][k-1]+dp[k+1][j-1]);如果從i到j之間沒有與j位置相匹配的括號,也即是:

     dp[i][j] = dp[i][j-1] + 1(即k走到第j-1個位置,未找到匹配!那麼括號數就要加1)

#include <iostream>
#include <cstring>
#include <cstdio>
#include <cmath>

using namespace std;

const int MAXN = 110;


bool Is_Match(char a, char b)
{
    if((a == '(' && b == ')') || (a == '[' && b == ']'))
        return true;
    return false;
}

int main()
{
    int T, i, j, k, Len;
    scanf("%d", &T);
    char str[MAXN];
    int dp[MAXN][MAXN];
    while(T--)
    {
        memset(dp, 0, sizeof(dp));
        scanf("%s", str);
        Len = strlen(str);
        for(i = 0; i <= Len; ++i)
            dp[i][i] = 1;
        for(j = 1; j < Len; ++j)
        {
            for(i = 0; i < j; ++i)
            {
                dp[i][j] = dp[i][j-1] + 1;
                for(k = i; k < j; ++k)
                {
                    if(Is_Match(str[k], str[j]))
                        dp[i][j] = min(dp[i][j], dp[i][k-1] + dp[k+1][j-1]);
                }

            }
        }
        printf("%d\n", dp[0][Len-1]);
    }
    return 0;
}