[Leetcode-146] LRU Cache 最近最少使用頁面置換演算法
阿新 • • 發佈:2019-02-11
0. 題目概要
Design and implement a data structure for Least Recently Used (LRU) cache. It should support the following operations: get and put.
get(key) - Get the value (will always be positive) of the key if the key exists in the cache, otherwise return -1.
put(key, value) - Set or insert the value if the key is not already present. When the cache reached its capacity, it should invalidate the least recently used item before inserting a new item.
Follow up:
Could you do both operations in O(1) time complexity?
Example:
//新建一個快取容量為2的LRUCache物件 cache
LRUCache cache = new LRUCache( 2 /* capacity */ );
cache.put(1, 1);
cache.put(2, 2);
cache.get(1); // returns 1 1被使用一次
cache.put(3, 3); // evicts key 2 此時2為最近最少使用的, 所以驅逐淘汰2 , 替換為3
cache .get(2); // returns -1 (not found) 因為2被淘汰,返回-1
cache.put(4, 4); // evicts key 1 淘汰1 用4替換1
cache.get(1); // returns -1 (not found) 因為1被淘汰,返回-1
cache.get(3); // returns 3 讀取3
cache.get(4); // returns 4 讀取4
AC 程式碼
/**
* Your LRUCache object will be instantiated and called as such:
* LRUCache obj = new LRUCache(capacity);
* int param_1 = obj.get(key);
* obj.put(key,value);
*/
class LRUCache {
public LRUCache(int capacity) {
}
public int get(int key) {
}
public void put(int key, int value) {
}
}
/**
* Your LRUCache object will be instantiated and called as such:
* LRUCache obj = new LRUCache(capacity);
* int param_1 = obj.get(key);
* obj.put(key,value);
*/
import java.util.ArrayList;
import java.util.HashMap;
public class LRU {
public int cap;
public ArrayList<Integer> list = new ArrayList<Integer>();
public HashMap<Integer,Integer> map = new HashMap<Integer, Integer>();
public LRU(int capacity){
this.cap = capacity;
}
public int get(int key){
if(map.containsKey(key)){
int index = list.indexOf(key);//確定key 在list的 index 下標
list.remove(index); // 原來連結串列中刪除
list.add(0, key); //新增到連結串列中的對前面 【最近訪問】
return map.get(key);//返回key 對應的value
}
return -1;//如若key不存在 返回-1
}
public void put(int key, int value){
if(map.containsKey(key)){
int index = list.indexOf(key);
list.remove(index);
list.add(0, key); // 移動到最近訪問的位置
map.put(key, value);
}else{
list.add(0, key);
map.put(key, value);
if(list.size() > cap){
int rm = list.get(list.size()-1); //獲得連結串列最後一個超出快取大小的元素的 下標rm
list.remove(list.size()-1); //從連結串列中刪除末尾元素 超出快取大小的元素
map.remove(rm); // 從雜湊表中 刪除對應的 溢位佇列的快取元素
}
}
}
}
下面貼出, 其他人提交的最快的程式碼:
import java.util.LinkedHashMap;
import java.util.Map;
public class LRUCache {
private LinkedHashMap<Integer, Integer> cache;
public LRUCache(int capacity) {
cache = new LinkedHashMap<Integer, Integer>(capacity, 1f, true) {
protected boolean removeEldestEntry(Map.Entry eldest) {
return size() > capacity;
}
};
}
public int get(int key) {
return cache.getOrDefault(key, -1);
}
public void put(int key, int value) {
cache.put(key, value);
}
}