hdu 5020(判斷三點共線)
阿新 • • 發佈:2019-02-13
Revenge of Collinearity
Time Limit: 8000/5000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Problem Description In geometry, collinearity is a property of a set of points, specifically, the property of lying on a single line. A set of points with this property is said to be collinear (often misspelled as colinear).
---Wikipedia
Today, Collinearity takes revenge on you. Given a set of N points in two-dimensional coordinate system, you have to find how many set of <Pi
Input The first line contains a single integer T, indicating the number of test cases.
Each test case begins with an integer N, following N lines, each line contains two integers Xi and Yi, describing a point.
[Technical Specification]
1. 1 <= T <= 33
2. 3 <= N <= 1 000
3. -1 000 000 000 <= Xi, Yi <= 1 000 000 000, and no two points are identical.
4. The ratio of test cases with N > 100 is less than 25%.
Output For each query, output the number of three points set which are collinear.
Sample Input 2 3 1 1 2 2 3 3 4 0 0 1 0 0 1 1 1
Sample Output 1 0解題思路:判斷三點共線首先想到的是列舉O(n³),顯然超時。這裡採用的是尋找相同斜率的方法,斜率相同,自然就會出現共線。首先對x進行排序,這樣就可以使複雜度降為O(n²),我們可以採用map來記錄斜率。
#include<iostream> #include<cstdio> #include<cstring> #include<algorithm> #include<map> using namespace std; const int maxn = 1005; struct Point { int x,y; }p[maxn]; int n; map<pair<int,int>,int> Map; bool cmp(Point a,Point b) { if(a.x == b.x) return a.y < b.y; return a.x < b.x; } int gcd(int a,int b) { if(a == 0) return b; if(b == 0) return a; if(a > b) swap(a,b); while(b) { int temp=a % b; a = b; b = temp; } return a; } int main() { int t; scanf("%d",&t); while(t--) { scanf("%d",&n); for(int i = 1; i <= n; i++) scanf("%d%d",&p[i].x,&p[i].y); sort(p+1,p+1+n,cmp); int ans = 0; for(int i = 1; i <= n; i++) { Map.clear(); for(int j = i + 1; j <= n; j++) { int cx = p[j].x - p[i].x; int cy = p[j].y - p[i].y; int d = gcd(cx,cy); if(d < 0) d = -d; cx /= d; cy /= d; Map[make_pair(cx,cy)]++; } for(map<pair<int,int>,int>::iterator it = Map.begin(); it != Map.end(); it++) { if(it->second >= 2) ans += (it->second) * (it->second - 1) / 2; //組合數:C(n,2) } } printf("%d\n",ans); } return 0; }