並查集演算法的簡介與演算法實現
並查集(Union-find Sets)是一種非常精巧而實用的資料結構,它主要用於處理一些不相交集合的合併問題。一些常見的用途有求連通子圖、求最小生成樹的 Kruskal 演算法和求最近公共祖先(Least Common Ancestors, LCA)等。
使用並查集時,首先會存在一組不相交的動態集合 S={S1,S2,⋯,Sk},一般都會使用一個整數表示集合中的一個元素。
每個集合可能包含一個或多個元素,並選出集合中的某個元素作為代表。每個集合中具體包含了哪些元素是不關心的,具體選擇哪個元素作為代表一般也是不關心的。我們關心的是,對於給定的元素,可以很快的找到這個元素所在的集合(的代表),以及合併兩個元素所在的集合,而且這些操作的時間複雜度都是常數級
並查集的基本操作有三個:
- makeSet(s):建立一個新的並查集,其中包含 s 個單元素集合。
- unionSet(x, y):把元素 x 和元素 y 所在的集合合併,要求 x 和 y 所在的集合不相交,如果相交則不合並。
- find(x):找到元素 x 所在的集合的代表,該操作也可以用於判斷兩個元素是否位於同一個集合,只要將它們各自的代表比較一下就可以了。
並查集的實現原理也比較簡單,就是使用樹來表示集合,樹的每個節點就表示集合中的一個元素,樹根對應的元素就是該集合的代表,如圖 1 所示。
圖 1 並查集的樹表示
圖中有兩棵樹,分別對應兩個集合,其中第一個集合為 {a,b,c,d},代表元素是 a
樹的節點表示集合中的元素,指標表示指向父節點的指標,根節點的指標指向自己,表示其沒有父節點。沿著每個節點的父節點不斷向上查詢,最終就可以找到該樹的根節點,即該集合的代表元素。
現在,應該可以很容易的寫出 makeSet 和 find 的程式碼了,假設使用一個足夠長的陣列來儲存樹節點(很類似之前講到的靜態連結串列),那麼 makeSet 要做的就是構造出如圖 2 的森林,其中每個元素都是一個單元素集合,即父節點是其自身:
圖 2 構造並查集初始化
相應的程式碼如下所示,時間複雜度是 O(n):
1 2 3 4 5 6 |
const int MAXSIZE = 500;
int uset[MAXSIZE];
void makeSet( int size) {
for ( int i = 0;i < size;i++) uset[i] = i;
}
|
接下來,就是 find 操作了,如果每次都沿著父節點向上查詢,那時間複雜度就是樹的高度,完全不可能達到常數級。這裡需要應用一種非常簡單而有效的策略——路徑壓縮。
路徑壓縮,就是在每次查詢時,令查詢路徑上的每個節點都直接指向根節點,如圖 3 所示。
圖 3 路徑壓縮
我準備了兩個版本的 find 操作實現,分別是遞迴版和非遞迴版,不過兩個版本目前並沒有發現有什麼明顯的效率差距,所以具體使用哪個完全憑個人喜好了。
1 2 3 4 5 6 7 8 9 10 |
int find( int x) {
if (x != uset[x]) uset[x] = find(uset[x]);
return uset[x];
}
int find( int x) {
int p = x, t;
while (uset[p] != p) p = uset[p];
while (x != p) { t = uset[x]; uset[x] = p; x = t; }
return x;
}
|
最後是合併操作 unionSet,並查集的合併也非常簡單,就是將一個集合的樹根指向另一個集合的樹根,如圖 4 所示。
圖 4 並查集的合併
這裡也可以應用一個簡單的啟發式策略——按秩合併。該方法使用秩來表示樹高度的上界,在合併時,總是將具有較小秩的樹根指向具有較大秩的樹根。簡單的說,就是總是將比較矮的樹作為子樹,新增到較高的樹中。為了儲存秩,需要額外使用一個與 uset 同長度的陣列,並將所有元素都初始化為 0。
1 2 3 4 5 6 7 8 |
void unionSet( int x, int y)
{
if ((x = find(x)) == (y = find(y))) return ;
if (rank[x] > rank[y]) uset[y] = x;
else {
uset[x] = y;
if (rank[x] == rank[y]) rank[y]++;
}
}
|
下面是按秩合併的並查集的完整程式碼,這裡只包含了遞迴的 find 操作。
除了按秩合併,並查集還有一種常見的策略,就是按集合中包含的元素個數(或者說樹中的節點數)合併,將包含節點較少的樹根,指向包含節點較多的樹根。這個策略與按秩合併的策略類似,同樣可以提升並查集的執行速度,而且省去了額外的 rank 陣列。
這樣的並查集具有一個略微不同的定義,即若 uset 的值是正數,則表示該元素的父節點(的索引);若是負數,則表示該元素是所在集合的代表(即樹根),而且值的相反數即為集合中的元素個數。相應的程式碼如下所示,同樣包含遞迴和非遞迴的 find 操作:
如果要獲取某個元素 x 所在集合包含的元素個數,可以使用 -uset[find(x)] 得到。
並查集的空間複雜度是 O(n) 的,這個很顯然,如果是按秩合併的,佔的空間要多一些。find 和 unionSet 操作都可以看成是常數級的,或者準確來說,在一個包含 n 個元素的並查集中,進行 m 次查詢或合併操作,最壞情況下所需的時間為 O(mα(n)),這裡的 α 是 Ackerman 函式的某個反函式,在極大的範圍內(比可觀察到的宇宙中估計的原子數量 1080 還大很多)都可以認為是不大於 4 的。具體的時間複雜度分析,請參見《演算法導論》的 21.4 節 帶路徑壓縮的按秩合併的分析。