RXD and math(HDU 6063 快速冪)
阿新 • • 發佈:2019-02-14
RXD and math
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 524288/524288 K (Java/Others) Total Submission(s): 293 Accepted Submission(s): 150Problem Description RXD is a good mathematician.
One day he wants to calculate:
∑i=1nkμ2(i)×⌊nki−−−√⌋
output the answer module 109+7.
1≤n,k≤1018
μ(n)=1
μ(n)=(−1)k(n=p1p2…pk)
μ(n)=0(otherwise)
p1,p2,p3…pk are different prime numbers
Input There are several test cases, please keep reading until EOF.
There are exact 10000 cases.
For each test case, there are 2 numbers n,k.
Output For each test case, output "Case #x: y", which means the test case number and the answer.
Sample Input 10 10
Sample Output Case #1: 999999937 //題意
#include <iostream> #include <cstdio> #include <cmath> #include <cstring> #include <string> #include <algorithm> using namespace std; typedef long long ll; const ll MOD = 1e9 + 7; ll n, k; ll multiply(ll a, ll b) { ll ans = 1; while (b) { if (b & 1) { ans = ((ans%MOD)*(a%MOD)) % MOD; b--; } b /= 2; //注意這裡a要先%MOD,不然第一次a*a會超過long long,會WA!!! a = ((a%MOD)*(a%MOD)) % MOD; } return ans; } int main() { int Case = 1; while (scanf("%lld%lld", &n, &k) != EOF) { ll sum = multiply(n, k); printf("Case #%d: %lld\n", Case++, sum%MOD); } return 0; }