1. 程式人生 > >121】Finding LC M【算數基本定理】

121】Finding LC M【算數基本定理】

LCM is an abbreviation used for Least Common Multiple in Mathematics. We say LCM (a, b, c) = L if and only if L is the least integer which is divisible by a, b and c.

You will be given a, b and L. You have to find c such that LCM (a, b, c) = L. If there are several solutions, print the one where c is as small as possible. If there is no solution, report so.

Input
Input starts with an integer T (≤ 325), denoting the number of test cases.

Each case starts with a line containing three integers a b L (1 ≤ a, b ≤ 106, 1 ≤ L ≤ 1012).

Output
For each case, print the case number and the minimum possible value of c. If no solution is found, print ‘impossible’.

Sample Input
3
3 5 30
209475 6992 77086800
2 6 10
Sample Output
Case 1: 2
Case 2: 1
Case 3: impossible

程式碼

#include<bits/stdc++.h>
using namespace std;
#define LL long long

const int N = (int)1e6+2;
const int M = 1E6+11;
const int mod = 1e9+7;
const int inf = 0x3f3f3f3f;

bool su[N+1]={1
,1,0};int prm[N+1],sz=0; void init(){ for(LL i=2;i<N;i++){ if(!su[i]){ prm[sz++]=i; for(LL j=i*i;j<N;j+=i) su[j]=1; } } // cout<<sz<<endl;; } int a[N],b[N]; void solve(int *arr,int n){ for(int i=0;i<sz ;i++){ while(n%prm[i]==0){ arr[i]++; n/=prm[i]; } if(n==1) break; } } int main(){ init(); int cas=1; int T;scanf("%d",&T); while(T--){ memset(a,0,sizeof(a)); memset(b,0,sizeof(b)); LL A,B,L;scanf("%lld%lld%lld",&A,&B,&L); solve(a,A); solve(b,B); LL ans=1; int flag=1; for(int i=0;i<sz;i++){ int cnt=0; while(L%prm[i]==0){ cnt++; L/=prm[i]; } if(a[i]>cnt || b[i]>cnt) { flag=0; break; } if(a[i]==cnt ||b[i]==cnt) continue; ans*=pow(prm[i],cnt); } if(L!=1) ans*=L; printf("Case %d: ",cas++); if(flag) printf("%lld\n",ans); else puts("impossible"); } return 0; }