1. 程式人生 > >4196】Remoteland 【逆元+算數基本定理】

4196】Remoteland 【逆元+算數基本定理】

In the Republic of Remoteland, the people celebrate their independence day every year. However, as it was a long long time ago, nobody can remember when it was exactly. The only thing people can remember is that today, the number of days elapsed since their independence (D) is a perfect square, and moreover it is the largest possible such number one can form as a product of distinct numbers less than or equal to n.
As the years in Remoteland have 1,000,000,007 days, their citizens just need D modulo 1,000,000,007. Note that they are interested in the largest D, not in the largest D modulo 1,000,000,007.
Input
Every test case is described by a single line with an integer n, (1<=n<=10,000, 000). The input ends with a line containing 0.
Output
For each test case, output the number of days ago the Republic became independent, modulo 1,000,000,007, one per line.
Sample Input
4
9348095
6297540
0
Sample Output
4
177582252
644064736
題意:從[1,n]之間選擇若干個數字,使其為平方數,現在求最大的這個平方數。

分析: 從算數基本定理來考慮, 如果一個數字是平方數那麼其所有質因子的指數都是偶數,從這一點來考慮,[1,n]之間最大的我們首選n! , 然後我們只需要列舉n!的所有的質因子,看其質因子的指數,如果是偶數,我們不用管,但是如果是奇數,我們就要除去一個當前質因子(因為如果有當前的這個質因子的話,那麼[1,n]之間一定有一個數字正好等於當前的這個質因子,所以我們除掉一個,就相當於將這個單獨的數去掉,不會影響什麼)。

程式碼

 #include<algorithm>
 #include<stdio.h>
 #define LL long long 
 using namespace std;

const
int MAXN = 1e7+11; const int MAXM = 1e7+11; const int mod = 1e9+7; const int inf = 0x3f3f3f3f; int prm[MAXN+2],sz; bool su[MAXN+2]; int fac[MAXM]; void init(){ su[0]=su[1]=true; for(int i=2;i<=MAXN;i++){ if(!su[i]) prm[++sz]=i; for(int j=1;j<=sz;j++){ int
t=i*prm[j]; if(t>MAXN) break; su[t]=true; if(i%prm[j]==0) break; } } fac[0]=fac[1]=1; for(int i=2;i<=MAXM;i++){ fac[i]=(LL)fac[i-1]*i%mod; } } LL power(LL a,LL b,LL c){ LL s=1,base=a%c; while(b){ if(b&1) s=s*base%c; base=base*base%c; b>>=1; } return s; } LL inv(LL a){ // 費馬小定理求逆元 return power(a,mod-2,mod); } void solve(LL n){ LL ans=fac[n]; LL temp=1; for(int i=1;i<=sz;i++){ LL cnt=0; LL t=n; if(n/prm[i]){ while(t){ cnt+=t/prm[i]; t/=prm[i]; } if(cnt&1) temp=temp*prm[i]%mod; // 將所有要除的先都存起來,最後求一下逆元, 一開始這裡直接就求逆元了,無限TLE。 }else break; } ans=ans*inv(temp)%mod; // 只要這裡求一次逆元就行了 printf("%lld\n",ans); } int main(){ LL n; init(); //printf("%d\n",sz); while(scanf("%lld",&n)&&n){ solve(n); } return 0; }