1. 程式人生 > >KMP模式匹配演算法(轉自阮一峰)

KMP模式匹配演算法(轉自阮一峰)

字串匹配是計算機的基本任務之一。

舉例來說,有一個字串"BBC ABCDAB ABCDABCDABDE",我想知道,裡面是否包含另一個字串"ABCDABD"?

許多演算法可以完成這個任務,Knuth-Morris-Pratt演算法(簡稱KMP)是最常用的之一。它以三個發明者命名,起頭的那個K就是著名科學家Donald Knuth。

這種演算法不太容易理解,網上有很多解釋,但讀起來都很費勁。直到讀到Jake Boxer的文章,我才真正理解這種演算法。下面,我用自己的語言,試圖寫一篇比較好懂的KMP演算法解釋。

1.

首先,字串"BBC ABCDAB ABCDABCDABDE"的第一個字元與搜尋詞"ABCDABD"的第一個字元,進行比較。因為B與A不匹配,所以搜尋詞後移一位。

2.

因為B與A不匹配,搜尋詞再往後移。

3.

就這樣,直到字串有一個字元,與搜尋詞的第一個字元相同為止。

4.

接著比較字串和搜尋詞的下一個字元,還是相同。

5.

直到字串有一個字元,與搜尋詞對應的字元不相同為止。

6.

這時,最自然的反應是,將搜尋詞整個後移一位,再從頭逐個比較。這樣做雖然可行,但是效率很差,因為你要把"搜尋位置"移到已經比較過的位置,重比一遍。

7.

一個基本事實是,當空格與D不匹配時,你其實知道前面六個字元是"ABCDAB"。KMP演算法的想法是,設法利用這個已知資訊,不要把"搜尋位置"移回已經比較過的位置,繼續把它向後移,這樣就提高了效率。

8.

怎麼做到這一點呢?可以針對搜尋詞,算出一張《部分匹配表》(Partial Match Table)。這張表是如何產生的,後面再介紹,這裡只要會用就可以了。

9.

已知空格與D不匹配時,前面六個字元"ABCDAB"是匹配的。查表可知,最後一個匹配字元B對應的"部分匹配值"為2,因此按照下面的公式算出向後移動的位數:

  移動位數 = 已匹配的字元數 - 對應的部分匹配值

因為 6 - 2 等於4,所以將搜尋詞向後移動4位。

10.

因為空格與C不匹配,搜尋詞還要繼續往後移。這時,已匹配的字元數為2("AB"),對應的"部分匹配值"為0。所以,移動位數 = 2 - 0,結果為 2,於是將搜尋詞向後移2位。

11.

因為空格與A不匹配,繼續後移一位。

12.

逐位比較,直到發現C與D不匹配。於是,移動位數 = 6 - 2,繼續將搜尋詞向後移動4位。

13.

逐位比較,直到搜尋詞的最後一位,發現完全匹配,於是搜尋完成。如果還要繼續搜尋(即找出全部匹配),移動位數 = 7 - 0,再將搜尋詞向後移動7位,這裡就不再重複了。

14.

下面介紹《部分匹配表》是如何產生的。

首先,要了解兩個概念:"字首"和"字尾"。 "字首"指除了最後一個字元以外,一個字串的全部頭部組合;"字尾"指除了第一個字元以外,一個字串的全部尾部組合。

15.

"部分匹配值"就是"字首"和"字尾"的最長的共有元素的長度。以"ABCDABD"為例,

  - "A"的字首和字尾都為空集,共有元素的長度為0;

  - "AB"的字首為[A],字尾為[B],共有元素的長度為0;

  - "ABC"的字首為[A, AB],字尾為[BC, C],共有元素的長度0;

  - "ABCD"的字首為[A, AB, ABC],字尾為[BCD, CD, D],共有元素的長度為0;

  - "ABCDA"的字首為[A, AB, ABC, ABCD],字尾為[BCDA, CDA, DA, A],共有元素為"A",長度為1;

  - "ABCDAB"的字首為[A, AB, ABC, ABCD, ABCDA],字尾為[BCDAB, CDAB, DAB, AB, B],共有元素為"AB",長度為2;

  - "ABCDABD"的字首為[A, AB, ABC, ABCD, ABCDA, ABCDAB],字尾為[BCDABD, CDABD, DABD, ABD, BD, D],共有元素的長度為0。

16.

"部分匹配"的實質是,有時候,字串頭部和尾部會有重複。比如,"ABCDAB"之中有兩個"AB",那麼它的"部分匹配值"就是2("AB"的長度)。搜尋詞移動的時候,第一個"AB"向後移動4位(字串長度-部分匹配值),就可以來到第二個"AB"的位置。