Leetcode: Edit Distance 編輯距離
阿新 • • 發佈:2019-02-14
歡迎討論~
Given two words word1 and word2, find the minimum number of operations required to convert word1 to word2.
You have the following 3 operations permitted on a word:
- Insert a character
- Delete a character
- Replace a character
二維動態規劃dp[][]定義:dp[i][j]: word1 的前i個字元到word2前j個字元的distance。
通項公式:
example 1: Insert a character
dp[5][2]: horse->rorse->rose->ros->ro
dp[5][3]: (horse->)horse's'->rorse's'->rose's'->ros's'->ro's'
example 2: Delete a character
dp[4][3]: hors->rors->ros
dp[5][3]: hors'e'->rors'e'->ros'e'(->ros)
example 3: Replace a character
dp[4][2]: hors->rors->ros->ro
replace word1[5] with word2[3]("s") when word1[5]!=word2[3].
dp[5][3]: hors'e'->rors'e'->ros'e'->ro's'
因此,如果要計算得出dp[i][j] 可以通過{dp[i-1][j-1],dp[i][j-1],dp[i-1][j]} 加上一種基礎操作的到。
class Solution { public: int minDistance(string word1, string word2) { int m = word1.size(), n = word2.size(); vector<vector<int>> dp(m+1, vector<int>(n+1, 0)); for(int i=1; i<=n; i++) dp[0][i] = i; for(int i=1; i<=m; i++) { dp[i][0] = i; for(int j=1; j<=n; j++) { dp[i][j] = dp[i-1][j-1]; if(word1[i-1]!=word2[j-1]) dp[i][j]++; dp[i][j] = min(min(dp[i-1][j]+1, dp[i][j-1]+1), dp[i][j]); } } return dp[m][n]; } };