1. 程式人生 > >影象處理DOG 演算法,python結合cv2實現

影象處理DOG 演算法,python結合cv2實現

DoG (Difference of Gaussian)是灰度影象增強和角點檢測的方法

#coding=utf-8
import cv2
import numpy as np


def  getExtrema(A, B, C, thresh):
    height,width= A.shape
    resu = np.ones((height, width), A.dtype) * 100
    for row in range(1, height-1):
        for col in range(1, width-1):
            center = B[row, col]
            if
center < thresh: continue B[row, col] = B[row, col - 1] minValue = np.vstack([A[row-1:row+2, col-1:col+2], B[row-1:row+2, col-1:col+2],C[row-1:row+2, col-1:col+2]]).min() maxValue = np.vstack([A[row - 1:row + 2, col - 1:col + 2], B[row - 1:row + 2
, col - 1:col + 2], C[row - 1:row + 2, col - 1:col + 2]]).max() if center < minValue: resu[row, col] = 0 if center > maxValue: resu[row, col] = 255 B[row, col] = center return resu def addPoint
(image, image_point):
height, width, dvim = image.shape for row in range(0, height): for col in range(0, width): if image_point[row, col] == 255: cv2.circle(image, (row, col), 5, thickness=1, color=[0,0,255]) elif image_point[row, col] == 0: cv2.circle(image, (row, col), 5, thickness=1, color=[0,255,0]) if __name__ == "__main__": image = cv2.imread('lena.jpg') r,g,b = cv2.split(image) image_gray = cv2.cvtColor(image,cv2.COLOR_BGR2GRAY) image_gray_blur1 = cv2.GaussianBlur(image_gray, (3, 3), 0.3) image_gray_blur2 = cv2.GaussianBlur(image_gray, (3, 3), 0.4) image_gray_blur3 = cv2.GaussianBlur(image_gray, (3, 3), 0.5) image_gray_blur4 = cv2.GaussianBlur(image_gray, (3, 3), 0.6) image_gray_blur5 = cv2.GaussianBlur(image_gray, (3, 3), 0.7) image_gray_blur6 = cv2.GaussianBlur(image_gray, (3, 3), 0.8) image_gray_dog1 = image_gray_blur2 - image_gray_blur1 image_gray_dog2 = image_gray_blur4 - image_gray_blur3 image_gray_dog3 = image_gray_blur6 - image_gray_blur5 image_point = getExtrema(image_gray_dog1, image_gray_dog2, image_gray_dog3, 2) #反過來的gbr cv2.namedWindow("image_DOG", flags= cv2.WINDOW_NORMAL) cv2.moveWindow("image_DOG", 300, 200) addPoint(image, image_point) cv2.imshow("image", cv2.imread("./lena.jpg")) cv2.imshow("image_gray", image_gray) cv2.imshow("image_gray_blur1", image_gray_blur1) cv2.imshow("image_gray_blur2", image_gray_blur2) cv2.imshow("image_gray_blur3", image_gray_blur3) cv2.imshow("image_gray_blur4", image_gray_blur4) cv2.imshow("image_gray_blur5", image_gray_blur5) cv2.imshow("image_gray_blur6", image_gray_blur6) cv2.imshow("image_gray_dog1", image_gray_dog1) cv2.imshow("image_gray_dog2", image_gray_dog2) cv2.imshow("image_gray_dog3", image_gray_dog3) cv2.imshow("image_DOG", image) cv2.imwrite("image_gray.jpg", image_gray,[int(cv2.IMWRITE_JPEG_QUALITY), 100]) cv2.imwrite("image_gray_blur1.jpg", image_gray_blur1,[int(cv2.IMWRITE_JPEG_QUALITY), 100]) cv2.imwrite("image_gray_blur2.jpg", image_gray_blur2,[int(cv2.IMWRITE_JPEG_QUALITY), 100]) cv2.imwrite("image_gray_blur3.jpg", image_gray_blur3,[int(cv2.IMWRITE_JPEG_QUALITY), 100]) cv2.imwrite("image_gray_blur4.jpg", image_gray_blur4,[int(cv2.IMWRITE_JPEG_QUALITY), 100]) cv2.imwrite("image_gray_blur5.jpg", image_gray_blur5,[int(cv2.IMWRITE_JPEG_QUALITY), 100]) cv2.imwrite("image_gray_blur6.jpg", image_gray_blur6,[int(cv2.IMWRITE_JPEG_QUALITY), 100]) cv2.imwrite("image_gray_dog1.jpg", image_gray_dog1,[int(cv2.IMWRITE_JPEG_QUALITY), 100]) cv2.imwrite("image_gray_dog2.jpg", image_gray_dog2,[int(cv2.IMWRITE_JPEG_QUALITY), 100]) cv2.imwrite("image_gray_dog3.jpg", image_gray_dog3,[int(cv2.IMWRITE_JPEG_QUALITY), 100]) cv2.imwrite("image_DOG.jpg", image,[int(cv2.IMWRITE_JPEG_QUALITY), 100] ) cv2.waitKey(0) cv2.destroyAllWindows()

ean.jpg lean.jpg

image_gray.jpg 這裡寫圖片描述

image_gray_blur1.jpg 這裡寫圖片描述

image_gray_blur2.jpg 這裡寫圖片描述

image_gray_blur3.jpg 這裡寫圖片描述

image_gray_blur4.jpg 這裡寫圖片描述

image_gray_blur5.jpg 這裡寫圖片描述

image_gray_blur6.jpg 這裡寫圖片描述

image_gray_dog1.jpg 這裡寫圖片描述

image_gray_dog2.jpg 這裡寫圖片描述

image_gray_dog3.jpg 這裡寫圖片描述

image_DOG.jpg 這裡寫圖片描述