1. 程式人生 > >Spark+Kafka實時監控Oracle資料預警

Spark+Kafka實時監控Oracle資料預警

**目標:** 監控Oracle某張記錄表,有新增資料則獲取表資料,並推送到微信企業。 **流程:** Kafka實時監控Oracle指定表,獲取該表操作資訊(日誌),使用Spark Structured Streaming消費Kafka,獲取資料後清洗後存入指定目錄,Python實時監控該目錄,提取文本里面數據並推送到微信。(Oracle一臺伺服器,Kafka及Spark在另外一臺伺服器) **架構:** Oracle+Kafka+Spark Structured Streaming+Python > centos7 > oracle 11g > apache-maven-3.6.3-bin.tar.gz > kafka-connect-oracle-master.zip > hadoop-2.7.1.tar.gz > kafka_2.11-2.4.1.tgz (scala版本必須與系統及連線spark的jar包一致,這裡是2.11) > spark-2.4.0-bin-without-hadoop.tgz > spark-streaming-kafka-0-8_2.11-2.4.0.jar > Java 1.8 > python 3.6 **一、Oracle側** 這邊設定比較簡單,使用SYS或者SYSTEM賬戶開啟歸檔日誌及附加日誌即可,一般實際工作出於資料安全考慮日誌都會開啟狀態,故不再多贅述,有搭建及開啟問題可以隨時私信。 **二、Kafka側** ①配置maven,並新增進環境變數 ```bash #下載地址:http://maven.apache.org/download.cgi #解壓 所有配置檔案預設放在/usr/local路徑 tar xvf apache-maven-3.6.3-bin.tar.gz -C /usr/local/ #修改環境變數 vi /etc/profile #加入下面內容 export MAVEN_HOME=/usr/local/apache-maven export PATH=$PATH:${MAVEN_HOME}/bin #重新整理配置 source /ect/profile ``` ②配置kafka-connect-oracle-master,config檔案按oracle側資訊配置,然後使用maven工具編譯。 ```bash #壓縮包下載地址:https://github.com/erdemcer/kafka-connect-oracle #解壓 unzip kafka-connect-oracle-master.zip #修改config下的配置檔案 vi kafka-connect-oracle-master/config/OracleSourceConnector.properties #修改內容如下: db.name.alias=dbserver #oracle例項名稱:select instance_name from v$instance tasks.max=1 topic=cdczztar #kafka主體名稱 db.name=DBSERVER #oracle伺服器:select name from v$database; db.hostname=192.168.81.159 #oracle伺服器地址 db.port=1521 #oracle埠,一般預設1521 db.user=test #資料庫使用者名稱 db.user.password=123456 #資料庫密碼 db.fetch.size=1 table.whitelist=LINHL.LHL_TEST #需要監控的表名,可以使用*號監控所有,必須大寫 table.blacklist= #不監控的表名,沒有為空,缺少該行會報錯 parse.dml.data=true reset.offset=true start.scn= multitenant=false #編譯 ,成功會有提示,並生成target資料夾 cd /usr/local/kafka-connect-oracle-master mvn clean package ``` ③解壓kafka,並放入前面master資料夾下的幾個jar包及配置檔案 ```bash #解壓 下載地址:http://kafka.apache.org/downloads tar xvf kafka_2.11-2.4.1.tgz -C /usr/local/ #改名 mv ./kafka_2.11-2.4.1 ./kafka #複製配置檔案 cp /usr/local/kafka-connect-oracle-master/target/kafka-connect-oracle-1.0.71.jar /usr/local/kafka/libs/ cp /usr/local/kafka-connect-oracle-master/lib/ojdbc7.jar /usr/local/kafka/libs/ cp /usr/local/kafka-connect-oracle-master/config/OracleSourceConnector.properties /usr/local/kafka/config/ ``` ④開啟Kafka ```bash #進入Kafka資料夾 cd /usr/local/kafka/bin/ #下面全都在單獨的視窗開啟服務,勿關閉視窗,測試狀態,故沒有在後臺執行 #啟動zookeeper ./zookeeper-server-start.sh ../config/zookeeper.properties #啟動kafka服務 ./kafka-server-start.sh ../config/server.properties #建立topic-cdczztar ./kafka-topics.sh --create --zookeeper localhost:2181 --replication-factor 1 --partitions 1 --topic cdczztar #檢視所有topic ./kafka-topics.sh --zookeeper localhost:2181 --list #啟動連線oracle ./connect-standalone.sh ../config/connect-standalone.properties ../config/OracleSourceConnector.properties #啟動消費端 #消費端此處只是為了展示用,後續使用spark做消費端 ./kafka-console-consumer.sh --bootstrap-server localhost:9092 --from-beginning --topic cdczztar ``` **三、Spark側** Structured Streaming需要啟用HDFS,這裡都在本地測試環境實現,因此關於java及hadoop的安裝,可以參考這篇的偽分散式配置dblab.xmu.edu.cn/blog/install-hadoop ①配置 ```bash #解壓 #官網可以下載,沒有資源請私信 tar -zxf spark-2.4.0-bin-without-hadoop.tgz -C /usr/local/ #重新命名 mv ./spark-2.4.0-bin-without-hadoop ./spark #修改配置檔案 cd /usr/local/spark cp ./conf/spark-env.sh.template ./conf/spark-env.sh vi ./conf/spark-env.sh #加入下面內容 export SPARK_DIST_CLASSPATH=$(/usr/local/hadoop/bin/hadoop classpath):/usr/local/spark/examples/jars/*:/usr/local/spark/jars/kafka/*:/usr/local/kafka/libs/* #修改系統環境變數 vi /etc/profile #加入下面內容 export HADOOP_HOME=/usr/local/hadoop export HADOOP_COMMON_LIB_NATIVE_DIR=$HADOOP_HOME/lib/native export JAVA_HOME=/opt/java/jdk1.8.0_261 export JRE_HOME=${JAVA_HOME}/jre export CLASSPATH=.:${JAVA_HOME}/lib:${JRE_HOME}/lib export PATH=$PATH:${JAVA_HOME}/bin:/usr/local/hbase/bin export SPARK_HOME=/usr/local/spark export PYTHONPATH=$SPARK_HOME/python:$SPARK_HOME/python/lib/py4j-0.10.7-src.zip:/usr/local/python3/lib/python3.6/site-packages/:$PYTHONPATH export PYSPARK_PYTHON=python3 export PATH=$HADOOP_HOME/bin:$SPARK_HOME/bin:$PATH #更新配置 source /etc/profile #在jars目錄建立kafka資料夾,把kafka所有jar包放到該目錄 cp /usr/local/spark-streaming-kafka-0-8_2.11-2.4.0.jar /usr/local/spark/jars/kafka cp /usr/local/kafka/libs/* /usr/local/spark/jars/kafka ``` ②Structured Streaming指令碼建立 ```python #!/usr/bin/env python3 import re from functools import partial from pyspark.sql.functions import * from pyspark.sql import SparkSession if __name__ == "__main__": spark = SparkSession \ .builder \ .appName("StructuredKafkaWordCount") \ .getOrCreate() spark.sparkContext.setLogLevel('WARN') #只提示警示資訊 lines = spark \ #使用spark streaming則是基於KakfkaUtils包使用createDirectStream .readStream \ .format("kafka") \ .option("kafka.bootstrap.servers", "localhost:9092") \ .option("subscribe", 'cdczztar') \ #要消費的topic .load().selectExpr("CAST(value AS STRING)") #lines.printSchema() #正則處理,根據實際資料處理,kafka獲取後是oracle日誌,在這隻提取表插入的值 pattern = 'data":(.+)}' fields = partial(regexp_extract, str="value", pattern=pattern) words = lines.select(fields(idx=1).alias("values")) #輸出模式:存入檔案 query = words \ .writeStream \ .outputMode("append") \ .format("csv") \ .option("path","file:///tmp/filesink") \ #存到伺服器地址 .option("checkpointLocation","file:///tmp/file-sink-cp") \ .trigger(processingTime="10 seconds") \ .start() query.awaitTermination() #新開一個伺服器視窗執行,這邊已經在程式碼目錄下 /usr/local/spark/bin/spark-submit --packages org.apache.spark:spark-sql-kafka-0-10_2.11:2.4.0 spark.py ``` ③執行python實時開啟寫入的檔案,提取資訊並推送到微信端 ```python import csv import pyinotify #這個包只支援linux,如果是window系統可以使用watchdog,一個原理及寫法 import time import requests import json import datetime import pandas as pd CORPID = "******" #企業微信id SECRET = "*******" #企業微信金鑰 AGENTID = 1000041 #企業微信埠 multi_event = pyinotify.IN_CREATE #只對create這個動作做監控 wm = pyinotify.WatchManager() #繼承ProcessEvent後,對process_IN_CREATE方法重寫 class MyHandler(pyinotify.ProcessEvent): def send_msg_to_wechat(self, content): record = '{}\n'.format(datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')) s = requests.session() url1 = "https://qyapi.weixin.qq.com/cgi-bin/gettoken?corpid={0}&corpsecret={1}".format(CORPID, SECRET) rep = s.get(url1) record += "{}\n".format(json.loads(rep.content)) if rep.status_code == 200: token = json.loads(rep.content)['access_token'] record += "獲取token成功\n" else: record += "獲取token失敗\n" token = None url2 = "https://qyapi.weixin.qq.com/cgi-bin/message/send?access_token={}".format(token) header = { "Content-Type": "application/json" } form_data = { "touser": "@all", "toparty": " PartyID1 | PartyID2 ", "totag": " TagID1 | TagID2 ", "msgtype": "text", "agentid": AGENTID, "text": { "content": content }, "safe": 0 } rep = s.post(url2, data=json.dumps(form_data).encode('utf-8'), headers=header) if rep.status_code == 200: res = json.loads(rep.content) record += "傳送成功\n" else: record += "傳送失敗\n" res = None return res def process_IN_CREATE(self, event): try: if '_spark_metadata' in event.pathname or '.crc' in event.pathname: pass else: print(event.pathname) f_path = event.pathname #此處坑,streaming那邊生成檔案還沒寫入資料就會觸發該任務,不sleep開啟的是空白檔案 time.sleep(5) df = pd.read_csv(r'' + f_path, encoding='utf8', names=['value'], sep='/') send_str = df.iloc[0, 0].replace('\\', '').replace(',"before":null}', '').replace('"','') print(send_str) self.send_msg_to_wechat('中間庫預警:' + send_str) except: pass handler = MyHandler() notifier = pyinotify.Notifier(wm,handler) wm.add_watch('/tmp/filesink/',multi_event) notifier.loop() ``` 微信端訊息如下: ![](https://img2020.cnblogs.com/blog/1483958/202102/1483958-20210203190535481-1306744006.png) **四、問題點** 還有下面幾個問題還沒實現,有思路還請隨時評論私信交流,感謝 - 在structured streaming消費了kafka資訊後,是否可以直接把訊息推送到微信埠? - python監控檔案有新增檔案路徑可以即時獲取,但是要獲取內容需要等待資料寫入,sleep的方式不穩定,是否有方法可以判斷資料已經寫完就讀取該檔案? *** 學習交流,有任何問題還請隨時評論指出