1. 程式人生 > 其它 >01複雜度分析(上)

01複雜度分析(上)

、資料結構和演算法解決的是“快”和“省”的問題,即如何讓程式碼執行的更快,如何讓程式碼更節省儲存空間。執行效率是演算法一個非常重要的考量指標。如何衡量演算法的執行效率?就需要時間、空間複雜度分析。

、程式碼跑一遍,通過統計、監控,就能得到演算法執行的時間和佔用的記憶體大小,這種叫做事後統計法。事後統計法有侷限性,測試結果依賴測試環境、受資料規模影響大。所以我們需要一個不用具體測試資料,,就可以粗略估計演算法的執行效率的方法,即時間、空間複雜度分析方法。

三、大O複雜度表示法

1  int cal(int n) {
2    int sum = 0;
3    int i = 1;
4
for (; i <= n; ++i) { 5 sum = sum + i; 6 } 7 return sum; 8 }
示例1

假設每行程式碼的執行時間都一樣,為unit_time。在這個假設基礎上,這段程式碼的總執行時間:第2、3行程式碼分別需要1個unit_time的執行時間,第4、5行都運行了n遍,所以需要2n*unit_time的執行時間,這段程式碼總的執行時間就是(2n+2)*unit_time。可以看出,所有程式碼的執行時間T(n)與每行程式碼的執行次數成正比

 1  int cal(int n) {
 2    int sum = 0;
3 int i = 1; 4 int j = 1; 5 for (; i <= n; ++i) { 6 j = 1; 7 for (; j <= n; ++j) { 8 sum = sum + i * j; 9 } 10 } 11 }
示例2

這段程式碼總的執行時間是T(n) = (2n2+2n+3)*unit_time。

所有程式碼的執行時間 T(n) 與每行程式碼的執行次數 f(n) 成正比。我們可以把這個規律總結成一個公式。注意,大 O 就登場了!

具體解釋一下這個公式。其中,T(n) 我們已經講過了,它表示程式碼執行的時間;n 表示資料規模的大小;f(n) 表示每行程式碼執行的次數總和。因為這是一個公式,所以用 f(n) 來表示。公式中的 O,表示程式碼的執行時間 T(n) 與 f(n) 表示式成正比。

所以,第一個例子中的 T(n) = O(2n+2),第二個例子中的 T(n) = O(2n2+2n+3)。這就是大 O 時間複雜度表示法。大 O 時間複雜度實際上並不具體表示程式碼真正的執行時間,而是表示程式碼執行時間隨資料規模增長的變化趨勢,所以,也叫作漸進時間複雜度(asymptotic time complexity),簡稱時間複雜度

當 n 很大時,你可以把它想象成 10000、100000。而公式中的低階、常量、係數三部分並不左右增長趨勢,所以都可以忽略。我們只需要記錄一個最大量級就可以了,如果用大 O 表示法表示剛講的那兩段程式碼的時間複雜度,就可以記為:T(n) = O(n); T(n) = O(n2)。

四、時間複雜度分析

1.只關注迴圈執行次數最多的一段程式碼

我剛才說了,大 O 這種複雜度表示方法只是表示一種變化趨勢。我們通常會忽略掉公式中的常量、低階、係數,只需要記錄一個最大階的量級就可以了。所以,我們在分析一個演算法、一段程式碼的時間複雜度的時候,也只關注迴圈執行次數最多的那一段程式碼就可以了。這段核心程式碼執行次數的 n 的量級,就是整段要分析程式碼的時間複雜度。

示例1中,迴圈執行次數最多的是第 4、5 行程式碼,所以這塊程式碼要重點分析。前面我們也講過,這兩行程式碼被執行了 n 次,所以總的時間複雜度就是 O(n)。

2.加法法則:總複雜度等於量級最大的那段程式碼的複雜度

 1 int cal(int n) {
 2    int sum_1 = 0;
 3    int p = 1;
 4    for (; p < 100; ++p) {
 5      sum_1 = sum_1 + p;
 6    }
 7 
 8    int sum_2 = 0;
 9    int q = 1;
10    for (; q < n; ++q) {
11      sum_2 = sum_2 + q;
12    }
13  
14    int sum_3 = 0;
15    int i = 1;
16    int j = 1;
17    for (; i <= n; ++i) {
18      j = 1; 
19      for (; j <= n; ++j) {
20        sum_3 = sum_3 +  i * j;
21      }
22    }
23  
24    return sum_1 + sum_2 + sum_3;
25  }
示例3

這個程式碼分為三部分,分別是求 sum_1、sum_2、sum_3。我們可以分別分析每一部分的時間複雜度,然後把它們放到一塊兒,再取一個量級最大的作為整段程式碼的複雜度。

第一段的時間複雜度是多少呢?這段程式碼迴圈執行了 100 次,所以是一個常量的執行時間,跟 n 的規模無關。

這裡我要再強調一下,即便這段程式碼迴圈 10000 次、100000 次,只要是一個已知的數,跟 n 無關,照樣也是常量級的執行時間。當 n 無限大的時候,就可以忽略。儘管對程式碼的執行時間會有很大影響,但是回到時間複雜度的概念來說,它表示的是一個演算法執行效率與資料規模增長的變化趨勢,所以不管常量的執行時間多大,我們都可以忽略掉。因為它本身對增長趨勢並沒有影響。

那第二段程式碼和第三段程式碼的時間複雜度是多少呢?答案是 O(n) 和 O(n2),你應該能容易就分析出來,我就不囉嗦了。

綜合這三段程式碼的時間複雜度,我們取其中最大的量級。所以,整段程式碼的時間複雜度就為 O(n2)。也就是說:總的時間複雜度就等於量級最大的那段程式碼的時間複雜度

那我們將這個規律抽象成公式就是:如果 T1(n)=O(f(n)),T2(n)=O(g(n));那麼 T(n)=T1(n)+T2(n)=max(O(f(n)), O(g(n))) =O(max(f(n), g(n))).

3.乘法法則:巢狀程式碼的複雜度等於巢狀內外程式碼複雜度的乘積

公式:如果 T1(n)=O(f(n)),T2(n)=O(g(n));那麼 T(n)=T1(n)*T2(n)=O(f(n))*O(g(n))=O(f(n)*g(n)).

也就是說,假設 T1(n) = O(n),T2(n) = O(n2),則 T1(n) * T2(n) = O(n3)。落實到具體的程式碼上,我們可以把乘法法則看成是巢狀迴圈,我舉個例子給你解釋一下。

 1 int cal(int n) {
 2    int ret = 0; 
 3    int i = 1;
 4    for (; i < n; ++i) {
 5      ret = ret + f(i);
 6    } 
 7  } 
 8  
 9  int f(int n) {
10   int sum = 0;
11   int i = 1;
12   for (; i < n; ++i) {
13     sum = sum + i;
14   } 
15   return sum;
16  }
示例4

我們單獨看 cal() 函式。假設 f() 只是一個普通的操作,那第 4~6 行的時間複雜度就是,T1(n) = O(n)。但 f() 函式本身不是一個簡單的操作,它的時間複雜度是 T2(n) = O(n),所以,整個 cal() 函式的時間複雜度就是,T(n) = T1(n) * T2(n) = O(n*n) = O(n2)。

五、幾種常見時間複雜度例項分析

對於剛羅列的複雜度量級,我們可以粗略地分為兩類,多項式量級和非多項式量級。其中,非多項式量級只有兩個:O(2n) 和 O(n!)。

我們把時間複雜度為非多項式量級的演算法問題叫作 NP(Non-Deterministic Polynomial,非確定多項式)問題。

當資料規模 n 越來越大時,非多項式量級演算法的執行時間會急劇增加,求解問題的執行時間會無限增長。所以,非多項式時間複雜度的演算法其實是非常低效的演算法。因此,關於 NP 時間複雜度我就不展開講了。我們主要來看幾種常見的多項式時間複雜度

1.O(1):常數階時間複雜度

O(1) 只是常量級時間複雜度的一種表示方法,並不是指只執行了一行程式碼。比如這段程式碼,即便有 3 行,它的時間複雜度也是 O(1),而不是 O(3)。

1  int i = 8;
2  int j = 6;
3  int sum = i + j;
示例5

只要程式碼的執行時間不隨 n 的增大而增長,這樣程式碼的時間複雜度我們都記作 O(1)。或者說,一般情況下,只要演算法中不存在迴圈語句、遞迴語句,即使有成千上萬行的程式碼,其時間複雜度也是Ο(1)

2. O(logn)、O(nlogn):對數階時間複雜度

1  i=1;
2  while (i <= n)  {
3    i = i * 2;
4  }
示例6

根據我們前面講的複雜度分析方法,第三行程式碼是迴圈執行次數最多的。所以,我們只要能計算出這行程式碼被執行了多少次,就能知道整段程式碼的時間複雜度。

從程式碼中可以看出,變數 i 的值從 1 開始取,每迴圈一次就乘以 2。當大於 n 時,迴圈結束。還記得我們高中學過的等比數列嗎?實際上,變數 i 的取值就是一個等比數列。如果我把它一個一個列出來,就應該是這個樣子的:

所以,我們只要知道 x 值是多少,就知道這行程式碼執行的次數了。通過 2x=n 求解 x 這個問題我們想高中應該就學過了,我就不多說了。x=log2n,所以,這段程式碼的時間複雜度就是 O(log2n)。

現在,我把程式碼稍微改下,你再看看,這段程式碼的時間複雜度是多少?

1  i=1;
2  while (i <= n)  {
3    i = i * 3;
4  }
示例7

根據我剛剛講的思路,很簡單就能看出來,這段程式碼的時間複雜度為 O(log3n)。

實際上,不管是以 2 為底、以 3 為底,還是以 10 為底,我們可以把所有對數階的時間複雜度都記為 O(logn)。為什麼呢?

我們知道,對數之間是可以互相轉換的,log3n 就等於 log32 * log2n,所以 O(log3n) = O(C * log2n),其中 C=log32 是一個常量。基於我們前面的一個理論:在採用大 O 標記複雜度的時候,可以忽略係數,即 O(Cf(n)) = O(f(n))。所以,O(log2n) 就等於 O(log3n)。因此,在對數階時間複雜度的表示方法裡,我們忽略對數的“底”,統一表示為 O(logn)。

如果你理解了我前面講的 O(logn),那 O(nlogn) 就很容易理解了。還記得我們剛講的乘法法則嗎?如果一段程式碼的時間複雜度是 O(logn),我們迴圈執行 n 遍,時間複雜度就是 O(nlogn) 了。而且,O(nlogn) 也是一種非常常見的演算法時間複雜度。比如,歸併排序、快速排序的時間複雜度都是 O(nlogn)。

3. O(m+n)、O(m*n)

我們再來講一種跟前面都不一樣的時間複雜度,程式碼的複雜度由兩個資料的規模來決定。老規矩,先看程式碼!

 1 int cal(int m, int n) {
 2   int sum_1 = 0;
 3   int i = 1;
 4   for (; i < m; ++i) {
 5     sum_1 = sum_1 + i;
 6   }
 7 
 8   int sum_2 = 0;
 9   int j = 1;
10   for (; j < n; ++j) {
11     sum_2 = sum_2 + j;
12   }
13 
14   return sum_1 + sum_2;
15 }
示例8

從程式碼中可以看出,m 和 n 是表示兩個資料規模。我們無法事先評估 m 和 n 誰的量級大,所以我們在表示複雜度的時候,就不能簡單地利用加法法則,省略掉其中一個。所以,上面程式碼的時間複雜度就是 O(m+n)。

針對這種情況,原來的加法法則就不正確了,我們需要將加法規則改為:T1(m) + T2(n) = O(f(m) + g(n))。但是乘法法則繼續有效:T1(m)*T2(n) = O(f(m) * f(n))。

六、空間複雜度分析

前面,咱們花了很長時間講大 O 表示法和時間複雜度分析,理解了前面講的內容,空間複雜度分析方法學起來就非常簡單了。

前面我講過,時間複雜度的全稱是漸進時間複雜度表示演算法的執行時間與資料規模之間的增長關係。類比一下,空間複雜度全稱就是漸進空間複雜度(asymptotic space complexity),表示演算法的儲存空間與資料規模之間的增長關係

我還是拿具體的例子來給你說明。(這段程式碼有點“傻”,一般沒人會這麼寫,我這麼寫只是為了方便給你解釋。)

 1 void print(int n) {
 2   int i = 0;
 3   int[] a = new int[n];
 4   for (i; i <n; ++i) {
 5     a[i] = i * i;
 6   }
 7 
 8   for (i = n-1; i >= 0; --i) {
 9     print out a[i]
10   }
11 }
示例9

跟時間複雜度分析一樣,我們可以看到,第 2 行程式碼中,我們申請了一個空間儲存變數 i,但是它是常量階的,跟資料規模 n 沒有關係,所以我們可以忽略。第 3 行申請了一個大小為 n 的 int 型別陣列,除此之外,剩下的程式碼都沒有佔用更多的空間,所以整段程式碼的空間複雜度就是 O(n)。

我們常見的空間複雜度就是 O(1)、O(n)、O(n2 ),像 O(logn)、O(nlogn) 這樣的對數階複雜度平時都用不到。而且,空間複雜度分析比時間複雜度分析要簡單很多。所以,對於空間複雜度,掌握剛我說的這些內容已經足夠了。